9,983 research outputs found

    Grammar Variational Autoencoder

    Get PDF
    Deep generative models have been wildly successful at learning coherent latent representations for continuous data such as video and audio. However, generative modeling of discrete data such as arithmetic expressions and molecular structures still poses significant challenges. Crucially, state-of-the-art methods often produce outputs that are not valid. We make the key observation that frequently, discrete data can be represented as a parse tree from a context-free grammar. We propose a variational autoencoder which encodes and decodes directly to and from these parse trees, ensuring the generated outputs are always valid. Surprisingly, we show that not only does our model more often generate valid outputs, it also learns a more coherent latent space in which nearby points decode to similar discrete outputs. We demonstrate the effectiveness of our learned models by showing their improved performance in Bayesian optimization for symbolic regression and molecular synthesis

    Leveraging Variational Autoencoders for Parameterized MMSE Channel Estimation

    Full text link
    In this manuscript, we propose to utilize the generative neural network-based variational autoencoder for channel estimation. The variational autoencoder models the underlying true but unknown channel distribution as a conditional Gaussian distribution in a novel way. The derived channel estimator exploits the internal structure of the variational autoencoder to parameterize an approximation of the mean squared error optimal estimator resulting from the conditional Gaussian channel models. We provide a rigorous analysis under which conditions a variational autoencoder-based estimator is mean squared error optimal. We then present considerations that make the variational autoencoder-based estimator practical and propose three different estimator variants that differ in their access to channel knowledge during the training and evaluation phase. In particular, the proposed estimator variant trained solely on noisy pilot observations is particularly noteworthy as it does not require access to noise-free, ground-truth channel data during training or evaluation. Extensive numerical simulations first analyze the internal behavior of the variational autoencoder-based estimators and then demonstrate excellent channel estimation performance compared to related classical and machine learning-based state-of-the-art channel estimators.Comment: 13 pages, 12 figure
    • …
    corecore