261,796 research outputs found

    Variational coupled mode theory and perturbation analysis for 1D photonic crystal structures using quasi-normal modes

    Get PDF
    Quasi-normal modes are used to directly characterize defect resonances in composite 1D Photonic Crystal structures. Variational coupled mode theory using QNMs enables quantification of the eigenfrequency splitting in composite structures. Also, variational perturbation analysis of complex eigenfrequencies is addressed

    Black Box Variational Inference

    Full text link
    Variational inference has become a widely used method to approximate posteriors in complex latent variables models. However, deriving a variational inference algorithm generally requires significant model-specific analysis, and these efforts can hinder and deter us from quickly developing and exploring a variety of models for a problem at hand. In this paper, we present a "black box" variational inference algorithm, one that can be quickly applied to many models with little additional derivation. Our method is based on a stochastic optimization of the variational objective where the noisy gradient is computed from Monte Carlo samples from the variational distribution. We develop a number of methods to reduce the variance of the gradient, always maintaining the criterion that we want to avoid difficult model-based derivations. We evaluate our method against the corresponding black box sampling based methods. We find that our method reaches better predictive likelihoods much faster than sampling methods. Finally, we demonstrate that Black Box Variational Inference lets us easily explore a wide space of models by quickly constructing and evaluating several models of longitudinal healthcare data

    On the Benefits of Surrogate Lagrangians in Optimal Control and Planning Algorithms

    Full text link
    This paper explores the relationship between numerical integrators and optimal control algorithms. Specifically, the performance of the differential dynamical programming (DDP) algorithm is examined when a variational integrator and a newly proposed surrogate variational integrator are used to propagate and linearize system dynamics. Surrogate variational integrators, derived from backward error analysis, achieve higher levels of accuracy while maintaining the same integration complexity as nominal variational integrators. The increase in the integration accuracy is shown to have a large effect on the performance of the DDP algorithm. In particular, significantly more optimized inputs are computed when the surrogate variational integrator is utilized

    The Forward-Backward-Forward Method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces

    Full text link
    Tseng's forward-backward-forward algorithm is a valuable alternative for Korpelevich's extragradient method when solving variational inequalities over a convex and closed set governed by monotone and Lipschitz continuous operators, as it requires in every step only one projection operation. However, it is well-known that Korpelevich's method converges and can therefore be used also for solving variational inequalities governed by pseudo-monotone and Lipschitz continuous operators. In this paper, we first associate to a pseudo-monotone variational inequality a forward-backward-forward dynamical system and carry out an asymptotic analysis for the generated trajectories. The explicit time discretization of this system results into Tseng's forward-backward-forward algorithm with relaxation parameters, which we prove to converge also when it is applied to pseudo-monotone variational inequalities. In addition, we show that linear convergence is guaranteed under strong pseudo-monotonicity. Numerical experiments are carried out for pseudo-monotone variational inequalities over polyhedral sets and fractional programming problems
    corecore