2 research outputs found

    Variational Semi-supervised Aspect-term Sentiment Analysis via Transformer

    Full text link
    Aspect-term sentiment analysis (ATSA) is a longstanding challenge in natural language understanding. It requires fine-grained semantical reasoning about a target entity appeared in the text. As manual annotation over the aspects is laborious and time-consuming, the amount of labeled data is limited for supervised learning. This paper proposes a semi-supervised method for the ATSA problem by using the Variational Autoencoder based on Transformer (VAET), which models the latent distribution via variational inference. By disentangling the latent representation into the aspect-specific sentiment and the lexical context, our method induces the underlying sentiment prediction for the unlabeled data, which then benefits the ATSA classifier. Our method is classifier agnostic, i.e., the classifier is an independent module and various advanced supervised models can be integrated. Experimental results are obtained on the SemEval 2014 task 4 and show that our method is effective with four classical classifiers. The proposed method outperforms two general semisupervised methods and achieves state-of-the-art performance.Comment: Accepted by CoNLL 201

    Transformer-based Conditional Variational Autoencoder for Controllable Story Generation

    Full text link
    We investigate large-scale latent variable models (LVMs) for neural story generation -- an under-explored application for open-domain long text -- with objectives in two threads: generation effectiveness and controllability. LVMs, especially the variational autoencoder (VAE), have achieved both effective and controllable generation through exploiting flexible distributional latent representations. Recently, Transformers and its variants have achieved remarkable effectiveness without explicit latent representation learning, thus lack satisfying controllability in generation. In this paper, we advocate to revive latent variable modeling, essentially the power of representation learning, in the era of Transformers to enhance controllability without hurting state-of-the-art generation effectiveness. Specifically, we integrate latent representation vectors with a Transformer-based pre-trained architecture to build conditional variational autoencoder (CVAE). Model components such as encoder, decoder and the variational posterior are all built on top of pre-trained language models -- GPT2 specifically in this paper. Experiments demonstrate state-of-the-art conditional generation ability of our model, as well as its excellent representation learning capability and controllability
    corecore