2,928 research outputs found

    Variational Reasoning for Question Answering with Knowledge Graph

    Full text link
    Knowledge graph (KG) is known to be helpful for the task of question answering (QA), since it provides well-structured relational information between entities, and allows one to further infer indirect facts. However, it is challenging to build QA systems which can learn to reason over knowledge graphs based on question-answer pairs alone. First, when people ask questions, their expressions are noisy (for example, typos in texts, or variations in pronunciations), which is non-trivial for the QA system to match those mentioned entities to the knowledge graph. Second, many questions require multi-hop logic reasoning over the knowledge graph to retrieve the answers. To address these challenges, we propose a novel and unified deep learning architecture, and an end-to-end variational learning algorithm which can handle noise in questions, and learn multi-hop reasoning simultaneously. Our method achieves state-of-the-art performance on a recent benchmark dataset in the literature. We also derive a series of new benchmark datasets, including questions for multi-hop reasoning, questions paraphrased by neural translation model, and questions in human voice. Our method yields very promising results on all these challenging datasets

    Variational Knowledge Graph Reasoning

    Full text link
    Inferring missing links in knowledge graphs (KG) has attracted a lot of attention from the research community. In this paper, we tackle a practical query answering task involving predicting the relation of a given entity pair. We frame this prediction problem as an inference problem in a probabilistic graphical model and aim at resolving it from a variational inference perspective. In order to model the relation between the query entity pair, we assume that there exists an underlying latent variable (paths connecting two nodes) in the KG, which carries the equivalent semantics of their relations. However, due to the intractability of connections in large KGs, we propose to use variation inference to maximize the evidence lower bound. More specifically, our framework (\textsc{Diva}) is composed of three modules, i.e. a posterior approximator, a prior (path finder), and a likelihood (path reasoner). By using variational inference, we are able to incorporate them closely into a unified architecture and jointly optimize them to perform KG reasoning. With active interactions among these sub-modules, \textsc{Diva} is better at handling noise and coping with more complex reasoning scenarios. In order to evaluate our method, we conduct the experiment of the link prediction task on multiple datasets and achieve state-of-the-art performances on both datasets.Comment: Accepted to NAACL 201

    UHop: An Unrestricted-Hop Relation Extraction Framework for Knowledge-Based Question Answering

    Full text link
    In relation extraction for knowledge-based question answering, searching from one entity to another entity via a single relation is called "one hop". In related work, an exhaustive search from all one-hop relations, two-hop relations, and so on to the max-hop relations in the knowledge graph is necessary but expensive. Therefore, the number of hops is generally restricted to two or three. In this paper, we propose UHop, an unrestricted-hop framework which relaxes this restriction by use of a transition-based search framework to replace the relation-chain-based search one. We conduct experiments on conventional 1- and 2-hop questions as well as lengthy questions, including datasets such as WebQSP, PathQuestion, and Grid World. Results show that the proposed framework enables the ability to halt, works well with state-of-the-art models, achieves competitive performance without exhaustive searches, and opens the performance gap for long relation paths.Comment: To appear in NAACL-HLT 201

    Multi-hop Reading Comprehension via Deep Reinforcement Learning based Document Traversal

    Full text link
    Reading Comprehension has received significant attention in recent years as high quality Question Answering (QA) datasets have become available. Despite state-of-the-art methods achieving strong overall accuracy, Multi-Hop (MH) reasoning remains particularly challenging. To address MH-QA specifically, we propose a Deep Reinforcement Learning based method capable of learning sequential reasoning across large collections of documents so as to pass a query-aware, fixed-size context subset to existing models for answer extraction. Our method is comprised of two stages: a linker, which decomposes the provided support documents into a graph of sentences, and an extractor, which learns where to look based on the current question and already-visited sentences. The result of the linker is a novel graph structure at the sentence level that preserves logical flow while still allowing rapid movement between documents. Importantly, we demonstrate that the sparsity of the resultant graph is invariant to context size. This translates to fewer decisions required from the Deep-RL trained extractor, allowing the system to scale effectively to large collections of documents. The importance of sequential decision making in the document traversal step is demonstrated by comparison to standard IE methods, and we additionally introduce a BM25-based IR baseline that retrieves documents relevant to the query only. We examine the integration of our method with existing models on the recently proposed QAngaroo benchmark and achieve consistent increases in accuracy across the board, as well as a 2-3x reduction in training time

    KG^2: Learning to Reason Science Exam Questions with Contextual Knowledge Graph Embeddings

    Full text link
    The AI2 Reasoning Challenge (ARC), a new benchmark dataset for question answering (QA) has been recently released. ARC only contains natural science questions authored for human exams, which are hard to answer and require advanced logic reasoning. On the ARC Challenge Set, existing state-of-the-art QA systems fail to significantly outperform random baseline, reflecting the difficult nature of this task. In this paper, we propose a novel framework for answering science exam questions, which mimics human solving process in an open-book exam. To address the reasoning challenge, we construct contextual knowledge graphs respectively for the question itself and supporting sentences. Our model learns to reason with neural embeddings of both knowledge graphs. Experiments on the ARC Challenge Set show that our model outperforms the previous state-of-the-art QA systems

    Multi-step Reasoning via Recurrent Dual Attention for Visual Dialog

    Full text link
    This paper presents a new model for visual dialog, Recurrent Dual Attention Network (ReDAN), using multi-step reasoning to answer a series of questions about an image. In each question-answering turn of a dialog, ReDAN infers the answer progressively through multiple reasoning steps. In each step of the reasoning process, the semantic representation of the question is updated based on the image and the previous dialog history, and the recurrently-refined representation is used for further reasoning in the subsequent step. On the VisDial v1.0 dataset, the proposed ReDAN model achieves a new state-of-the-art of 64.47% NDCG score. Visualization on the reasoning process further demonstrates that ReDAN can locate context-relevant visual and textual clues via iterative refinement, which can lead to the correct answer step-by-step.Comment: Accepted to ACL 201

    Knowledge Authoring and Question Answering with KALM

    Full text link
    Knowledge representation and reasoning (KRR) is one of the key areas in artificial intelligence (AI) field. It is intended to represent the world knowledge in formal languages (e.g., Prolog, SPARQL) and then enhance the expert systems to perform querying and inference tasks. Currently, constructing large scale knowledge bases (KBs) with high quality is prohibited by the fact that the construction process requires many qualified knowledge engineers who not only understand the domain-specific knowledge but also have sufficient skills in knowledge representation. Unfortunately, qualified knowledge engineers are in short supply. Therefore, it would be very useful to build a tool that allows the user to construct and query the KB simply via text. Although there is a number of systems developed for knowledge extraction and question answering, they mainly fail in that these system don't achieve high enough accuracy whereas KRR is highly sensitive to erroneous data. In this thesis proposal, I will present Knowledge Authoring Logic Machine (KALM), a rule-based system which allows the user to author knowledge and query the KB in text. The experimental results show that KALM achieved superior accuracy in knowledge authoring and question answering as compared to the state-of-the-art systems.Comment: In Proceedings ICLP 2019, arXiv:1909.0764

    Semi-Automatic Terminology Ontology Learning Based on Topic Modeling

    Full text link
    Ontologies provide features like a common vocabulary, reusability, machine-readable content, and also allows for semantic search, facilitate agent interaction and ordering & structuring of knowledge for the Semantic Web (Web 3.0) application. However, the challenge in ontology engineering is automatic learning, i.e., the there is still a lack of fully automatic approach from a text corpus or dataset of various topics to form ontology using machine learning techniques. In this paper, two topic modeling algorithms are explored, namely LSI & SVD and Mr.LDA for learning topic ontology. The objective is to determine the statistical relationship between document and terms to build a topic ontology and ontology graph with minimum human intervention. Experimental analysis on building a topic ontology and semantic retrieving corresponding topic ontology for the user's query demonstrating the effectiveness of the proposed approach

    Factor Graph Attention

    Full text link
    Dialog is an effective way to exchange information, but subtle details and nuances are extremely important. While significant progress has paved a path to address visual dialog with algorithms, details and nuances remain a challenge. Attention mechanisms have demonstrated compelling results to extract details in visual question answering and also provide a convincing framework for visual dialog due to their interpretability and effectiveness. However, the many data utilities that accompany visual dialog challenge existing attention techniques. We address this issue and develop a general attention mechanism for visual dialog which operates on any number of data utilities. To this end, we design a factor graph based attention mechanism which combines any number of utility representations. We illustrate the applicability of the proposed approach on the challenging and recently introduced VisDial datasets, outperforming recent state-of-the-art methods by 1.1% for VisDial0.9 and by 2% for VisDial1.0 on MRR. Our ensemble model improved the MRR score on VisDial1.0 by more than 6%.Comment: Accepted to CVPR 2019; revised version includes bottom-up feature

    Probabilistic Neural-symbolic Models for Interpretable Visual Question Answering

    Full text link
    We propose a new class of probabilistic neural-symbolic models, that have symbolic functional programs as a latent, stochastic variable. Instantiated in the context of visual question answering, our probabilistic formulation offers two key conceptual advantages over prior neural-symbolic models for VQA. Firstly, the programs generated by our model are more understandable while requiring lesser number of teaching examples. Secondly, we show that one can pose counterfactual scenarios to the model, to probe its beliefs on the programs that could lead to a specified answer given an image. Our results on the CLEVR and SHAPES datasets verify our hypotheses, showing that the model gets better program (and answer) prediction accuracy even in the low data regime, and allows one to probe the coherence and consistency of reasoning performed.Comment: ICML 2019 Camera Ready + Appendi
    • …
    corecore