8 research outputs found

    A Deep Primal-Dual Network for Guided Depth Super-Resolution

    Full text link
    In this paper we present a novel method to increase the spatial resolution of depth images. We combine a deep fully convolutional network with a non-local variational method in a deep primal-dual network. The joint network computes a noise-free, high-resolution estimate from a noisy, low-resolution input depth map. Additionally, a high-resolution intensity image is used to guide the reconstruction in the network. By unrolling the optimization steps of a first-order primal-dual algorithm and formulating it as a network, we can train our joint method end-to-end. This not only enables us to learn the weights of the fully convolutional network, but also to optimize all parameters of the variational method and its optimization procedure. The training of such a deep network requires a large dataset for supervision. Therefore, we generate high-quality depth maps and corresponding color images with a physically based renderer. In an exhaustive evaluation we show that our method outperforms the state-of-the-art on multiple benchmarks.Comment: BMVC 201

    Depth Estimation via Affinity Learned with Convolutional Spatial Propagation Network

    Full text link
    Depth estimation from a single image is a fundamental problem in computer vision. In this paper, we propose a simple yet effective convolutional spatial propagation network (CSPN) to learn the affinity matrix for depth prediction. Specifically, we adopt an efficient linear propagation model, where the propagation is performed with a manner of recurrent convolutional operation, and the affinity among neighboring pixels is learned through a deep convolutional neural network (CNN). We apply the designed CSPN to two depth estimation tasks given a single image: (1) To refine the depth output from state-of-the-art (SOTA) existing methods; and (2) to convert sparse depth samples to a dense depth map by embedding the depth samples within the propagation procedure. The second task is inspired by the availability of LIDARs that provides sparse but accurate depth measurements. We experimented the proposed CSPN over two popular benchmarks for depth estimation, i.e. NYU v2 and KITTI, where we show that our proposed approach improves in not only quality (e.g., 30% more reduction in depth error), but also speed (e.g., 2 to 5 times faster) than prior SOTA methods.Comment: 14 pages, 8 figures, ECCV 201

    Integrated cosparse analysis model with explicit edge inconsistency measurement for guided depth map upsampling

    Full text link
    © 2018 SPIE and IS & T. A low-resolution depth map can be upsampled through the guidance from the registered high-resolution color image. This type of method is so-called guided depth map upsampling. Among the existing methods based on Markov random field (MRF), either data-driven or model-based prior is adopted to construct the regularization term. The data-driven prior can implicitly reveal the relation between color-depth image pair by training on external data. The model-based prior provides the anisotropic smoothness constraint guided by high-resolution color image. These types of priors can complement each other to solve the ambiguity in guided depth map upsampling. An MRF-based approach is proposed that takes both of them into account to regularize the depth map. Based on analysis sparse coding, the data-driven prior is defined by joint cosparsity on the vectors transformed from color-depth patches using the pair of learned operators. It is based on the assumption that the cosupports of such bimodal image structures computed by the operators are aligned. The edge inconsistency measurement is explicitly calculated, which is embedded into the model-based prior. It can significantly mitigate texture-copying artifacts. The experimental results on Middlebury datasets demonstrate the validity of the proposed method that outperforms seven state-of-the-art approaches
    corecore