3 research outputs found

    Variational Cross-domain Natural Language Generation for Spoken Dialogue Systems

    Full text link
    Cross-domain natural language generation (NLG) is still a difficult task within spoken dialogue modelling. Given a semantic representation provided by the dialogue manager, the language generator should generate sentences that convey desired information. Traditional template-based generators can produce sentences with all necessary information, but these sentences are not sufficiently diverse. With RNN-based models, the diversity of the generated sentences can be high, however, in the process some information is lost. In this work, we improve an RNN-based generator by considering latent information at the sentence level during generation using the conditional variational autoencoder architecture. We demonstrate that our model outperforms the original RNN-based generator, while yielding highly diverse sentences. In addition, our model performs better when the training data is limited.Comment: Sigdial 201

    Tree-Structured Semantic Encoder with Knowledge Sharing for Domain Adaptation in Natural Language Generation

    Full text link
    Domain adaptation in natural language generation (NLG) remains challenging because of the high complexity of input semantics across domains and limited data of a target domain. This is particularly the case for dialogue systems, where we want to be able to seamlessly include new domains into the conversation. Therefore, it is crucial for generation models to share knowledge across domains for the effective adaptation from one domain to another. In this study, we exploit a tree-structured semantic encoder to capture the internal structure of complex semantic representations required for multi-domain dialogues in order to facilitate knowledge sharing across domains. In addition, a layer-wise attention mechanism between the tree encoder and the decoder is adopted to further improve the model's capability. The automatic evaluation results show that our model outperforms previous methods in terms of the BLEU score and the slot error rate, in particular when the adaptation data is limited. In subjective evaluation, human judges tend to prefer the sentences generated by our model, rating them more highly on informativeness and naturalness than other systems.Comment: Published in SIGDIAL201

    Continual Learning for Natural Language Generation in Task-oriented Dialog Systems

    Full text link
    Natural language generation (NLG) is an essential component of task-oriented dialog systems. Despite the recent success of neural approaches for NLG, they are typically developed in an offline manner for particular domains. To better fit real-life applications where new data come in a stream, we study NLG in a "continual learning" setting to expand its knowledge to new domains or functionalities incrementally. The major challenge towards this goal is catastrophic forgetting, meaning that a continually trained model tends to forget the knowledge it has learned before. To this end, we propose a method called ARPER (Adaptively Regularized Prioritized Exemplar Replay) by replaying prioritized historical exemplars, together with an adaptive regularization technique based on ElasticWeight Consolidation. Extensive experiments to continually learn new domains and intents are conducted on MultiWoZ-2.0 to benchmark ARPER with a wide range of techniques. Empirical results demonstrate that ARPER significantly outperforms other methods by effectively mitigating the detrimental catastrophic forgetting issue.Comment: Accepted as Long Paper at "Findgins of EMNLP, 2020
    corecore