6 research outputs found

    Selection and Estimation for Mixed Graphical Models

    Full text link
    We consider the problem of estimating the parameters in a pairwise graphical model in which the distribution of each node, conditioned on the others, may have a different parametric form. In particular, we assume that each node's conditional distribution is in the exponential family. We identify restrictions on the parameter space required for the existence of a well-defined joint density, and establish the consistency of the neighbourhood selection approach for graph reconstruction in high dimensions when the true underlying graph is sparse. Motivated by our theoretical results, we investigate the selection of edges between nodes whose conditional distributions take different parametric forms, and show that efficiency can be gained if edge estimates obtained from the regressions of particular nodes are used to reconstruct the graph. These results are illustrated with examples of Gaussian, Bernoulli, Poisson and exponential distributions. Our theoretical findings are corroborated by evidence from simulation studies

    Extending expectation propagation for graphical models

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2005.Includes bibliographical references (p. 101-106).Graphical models have been widely used in many applications, ranging from human behavior recognition to wireless signal detection. However, efficient inference and learning techniques for graphical models are needed to handle complex models, such as hybrid Bayesian networks. This thesis proposes extensions of expectation propagation, a powerful generalization of loopy belief propagation, to develop efficient Bayesian inference and learning algorithms for graphical models. The first two chapters of the thesis present inference algorithms for generative graphical models, and the next two propose learning algorithms for conditional graphical models. First, the thesis proposes a window-based EP smoothing algorithm for online estimation on hybrid dynamic Bayesian networks. For an application in wireless communications, window-based EP smoothing achieves estimation accuracy comparable to sequential Monte Carlo methods, but with less than one-tenth computational cost. Second, it develops a new method that combines tree-structured EP approximations with the junction tree for inference on loopy graphs. This new method saves computation and memory by propagating messages only locally to a subgraph when processing each edge in the entire graph. Using this local propagation scheme, this method is not only more accurate, but also faster than loopy belief propagation and structured variational methods. Third, it proposes predictive automatic relevance determination (ARD) to enhance classification accuracy in the presence of irrelevant features. ARD is a Bayesian technique for feature selection.(cont.) The thesis discusses the overfitting problem associated with ARD, and proposes a method that optimizes the estimated predictive performance, instead of maximizing the model evidence. For a gene expression classification problem, predictive ARD outperforms previous methods, including traditional ARD as well as support vector machines combined with feature selection techniques. Finally, it presents Bayesian conditional random fields (BCRFs) for classifying interdependent and structured data, such as sequences, images or webs. BCRFs estimate the posterior distribution of model parameters and average prediction over this posterior to avoid overfitting. For the problems of frequently-asked-question labeling and of ink recognition, BCRFs achieve superior prediction accuracy over conditional random fields trained with maximum likelihood and maximum a posteriori criteria.by Yuan Qi.Ph.D

    Variational Chernoff Bounds for Graphical Models

    No full text
    Recent research has made significant progress on the problem of bounding log partition functions for exponential family graphical models. Such bounds have associated dual parameters that are often used as heuristic estimates of the marginal probabilities required in inference and learning. However these variational estimates do not give rigorous bounds on marginal probabilities, nor do they give estimates for probabilities of more general events than simple marginals. In this paper we build on this recent work by deriving rigorous upper and lower bounds on event probabilities for graphical models. Our approach is based on the use of generalized Chernoff bounds to express bounds on event probabilities in terms of convex optimization problems; these optimization problems, in turn, require estimates of generalized log partition functions. Simulations indicate that this technique can result in useful, rigorous bounds to complement the heuristic variational estimates, with comparable computational cost

    Variational Chernoff Bounds for Graphical Models

    No full text
    Recent research has made significant progress on the problem of bounding log partition functions for exponential family graphical models. Such bounds have associated dual parameters that are often used as heuristic estimates of the marginal probabilities required in inference and learning. However these variational estimates do not give rigorous bounds on marginal probabilities, nor do they give estimates for probabilities of more general events than simple marginals. In this paper we build on this recent work by deriving rigorous upper and lower bounds on event probabilities for graphical models. Our approach is based on the use of generalized Chernoff bounds to express bounds on event probabilities in terms of convex optimization problems; these optimization problems, in turn, require estimates of generalized log partition functions. Simulations indicate that this technique can result in useful, rigorous bounds to complement the heuristic variational estimates, with comparable computational cost
    corecore