2 research outputs found

    From neuronal populations to behavior: a computational journey

    Get PDF
    Cognitive behaviors originate in the responses of neuronal populations. We have a reasonable understanding of how the activity of a single neuron can be related to a specific behavior. However, it is still unclear how more complex behaviors are inferred from the responses of neuronal populations. This is a particularly timely problem because multi-neuronal recording techniques have recently become increasingly available, simultaneously spurring advances in the analysis of neuronal population data. These developments are, however, constrained by the challenges of combining theoretical and experimental approaches because both approaches have their unique set of constraints. A solution to this problem is to design computational models that are either derived or inspired by cortical computations

    Variance in population firing rate as a measure of slow time-scale correlation

    No full text
    Correlated variability in the spiking responses of pairs of neurons, also known as spike count correlation, is a key indicator of functional connectivity and a critical factor in population coding. Underscoring the importance of correlation as a measure for cognitive neuroscience research is the observation that spike count correlations are not fixed, but are rather modulated by perceptual and cognitive context. Yet while this context fluctuates from moment to moment, correlation must be calculated over multiple trials. This property undermines its utility as a dependent measure for investigations of cognitive processes which fluctuate on a trial-to-trial basis, such as selective attention. A measure of functional connectivity that can be assayed on a moment-to-moment basis is needed to investigate the single-trial dynamics of populations of spiking neurons. Here, we introduce the measure of population variance in normalized firing rate for this goal. We show using mathematical analysis, computer simulations and in vivo data how population variance in normalized firing rate is inversely related to the latent correlation in the population, and how this measure can be used to reliably classify trials from different typical correlation conditions, even when firing rate is held constant. We discuss the potential advantages for using population variance in normalized firing rate as a dependent measure for both basic and applied neuroscience research
    corecore