3,544 research outputs found

    Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decomposition

    Get PDF
    Hierarchical uncertainty quantification can reduce the computational cost of stochastic circuit simulation by employing spectral methods at different levels. This paper presents an efficient framework to simulate hierarchically some challenging stochastic circuits/systems that include high-dimensional subsystems. Due to the high parameter dimensionality, it is challenging to both extract surrogate models at the low level of the design hierarchy and to handle them in the high-level simulation. In this paper, we develop an efficient ANOVA-based stochastic circuit/MEMS simulator to extract efficiently the surrogate models at the low level. In order to avoid the curse of dimensionality, we employ tensor-train decomposition at the high level to construct the basis functions and Gauss quadrature points. As a demonstration, we verify our algorithm on a stochastic oscillator with four MEMS capacitors and 184 random parameters. This challenging example is simulated efficiently by our simulator at the cost of only 10 minutes in MATLAB on a regular personal computer.Comment: 14 pages (IEEE double column), 11 figure, accepted by IEEE Trans CAD of Integrated Circuits and System

    Kontextsensitive Modellhierarchien für Quantifizierung der höherdimensionalen Unsicherheit

    Get PDF
    We formulate four novel context-aware algorithms based on model hierarchies aimed to enable an efficient quantification of uncertainty in complex, computationally expensive problems, such as fluid-structure interaction and plasma microinstability simulations. Our results show that our algorithms are more efficient than standard approaches and that they are able to cope with the challenges of quantifying uncertainty in higher-dimensional, complex problems.Wir formulieren vier kontextsensitive Algorithmen auf der Grundlage von Modellhierarchien um eine effiziente Quantifizierung der Unsicherheit bei komplexen, rechenintensiven Problemen zu ermöglichen, wie Fluid-Struktur-Wechselwirkungs- und Plasma-Mikroinstabilitätssimulationen. Unsere Ergebnisse zeigen, dass unsere Algorithmen effizienter als Standardansätze sind und die Herausforderungen der Quantifizierung der Unsicherheit in höherdimensionalen, komplexen Problemen bewältigen können
    corecore