153,156 research outputs found

    Contextual Stochastic Bilevel Optimization

    Full text link
    We introduce contextual stochastic bilevel optimization (CSBO) -- a stochastic bilevel optimization framework with the lower-level problem minimizing an expectation conditioned on some contextual information and the upper-level decision variable. This framework extends classical stochastic bilevel optimization when the lower-level decision maker responds optimally not only to the decision of the upper-level decision maker but also to some side information and when there are multiple or even infinite many followers. It captures important applications such as meta-learning, personalized federated learning, end-to-end learning, and Wasserstein distributionally robust optimization with side information (WDRO-SI). Due to the presence of contextual information, existing single-loop methods for classical stochastic bilevel optimization are unable to converge. To overcome this challenge, we introduce an efficient double-loop gradient method based on the Multilevel Monte-Carlo (MLMC) technique and establish its sample and computational complexities. When specialized to stochastic nonconvex optimization, our method matches existing lower bounds. For meta-learning, the complexity of our method does not depend on the number of tasks. Numerical experiments further validate our theoretical results.Comment: The paper is accepted by NeurIPS 202

    Robust optimization of control parameters for WEC arrays using stochastic methods

    Full text link
    This work presents a new computational optimization framework for the robust control of parks of Wave Energy Converters (WEC) in irregular waves. The power of WEC parks is maximized with respect to the individual control damping and stiffness coefficients of each device. The results are robust with respect to the incident wave direction, which is treated as a random variable. Hydrodynamic properties are computed using the linear potential model, and the dynamics of the system is computed in the frequency domain. A slamming constraint is enforced to ensure that the results are physically realistic. We show that the stochastic optimization problem is well posed. Two optimization approaches for dealing with stochasticity are then considered: stochastic approximation and sample average approximation. The outcomes of the above mentioned methods in terms of accuracy and computational time are presented. The results of the optimization for complex and realistic array configurations of possible engineering interest are then discussed. Results of extensive numerical experiments demonstrate the efficiency of the proposed computational framework

    When can we improve on sample average approximation for stochastic optimization?

    Get PDF
    We explore the performance of sample average approximation in comparison with several other methods for stochastic optimization. The methods we evaluate are (a) bagging; (b) kernel density estimation; (c) maximum likelihood estimation; and (d) a Bayesian approach. We use two test sets: first a set of quadratic objective functions allowing different types of interaction between the random component and the univariate decision variable; and second a set of portfolio optimization problems. We make recommendations for effective approaches

    Online Kernel Sliced Inverse Regression

    Full text link
    Online dimension reduction is a common method for high-dimensional streaming data processing. Online principal component analysis, online sliced inverse regression, online kernel principal component analysis and other methods have been studied in depth, but as far as we know, online supervised nonlinear dimension reduction methods have not been fully studied. In this article, an online kernel sliced inverse regression method is proposed. By introducing the approximate linear dependence condition and dictionary variable sets, we address the problem of increasing variable dimensions with the sample size in the online kernel sliced inverse regression method, and propose a reduced-order method for updating variables online. We then transform the problem into an online generalized eigen-decomposition problem, and use the stochastic optimization method to update the centered dimension reduction directions. Simulations and the real data analysis show that our method can achieve close performance to batch processing kernel sliced inverse regression

    Data-driven satisficing measure and ranking

    Full text link
    We propose an computational framework for real-time risk assessment and prioritizing for random outcomes without prior information on probability distributions. The basic model is built based on satisficing measure (SM) which yields a single index for risk comparison. Since SM is a dual representation for a family of risk measures, we consider problems constrained by general convex risk measures and specifically by Conditional value-at-risk. Starting from offline optimization, we apply sample average approximation technique and argue the convergence rate and validation of optimal solutions. In online stochastic optimization case, we develop primal-dual stochastic approximation algorithms respectively for general risk constrained problems, and derive their regret bounds. For both offline and online cases, we illustrate the relationship between risk ranking accuracy with sample size (or iterations).Comment: 26 Pages, 6 Figure
    corecore