2,469,337 research outputs found
S5 0716+714 : GeV variability study
The GeV observations by Fermi-LAT give us the opportunity to characterize the
high-energy emission (100 MeV - 300 GeV) variability properties of the BL Lac
object S5 0716+714. In this study, we performed flux and spectral analysis of
more than 3 year long (August 2008 to April 2012) Fermi-LAT data of the source.
During this period, the source exhibits two different modes of flux variability
with characteristic timescales of ~75 and ~140 days, respectively. We also
notice that the flux variations are characterized by a weak spectral hardening.
The GeV spectrum of the source shows a clear deviation from a simple power law,
and is better explained by a broken power law. Similar to other bright Fermi
blazars, the break energy does not vary with the source flux during the
different activity states. We discuss several possible scenarios to explain the
observed spectral break.Comment: 21 pages, 10 figures, Accepted for publication in Advances in Space
Research journa
Radial dependence of line profile variability in seven O9--B0.5 stars
Massive stars show a variety of spectral variability: presence of discrete
absorption components in UV P-Cygni profiles, optical line profile variability,
X-ray variability, radial velocity modulations. Our goal is to study the
spectral variability of single OB stars to better understand the relation
between photospheric and wind variability. For that, we rely on high spectral
resolution, high signal-to-noise ratio optical spectra collected with the
spectrograph NARVAL on the Telescope Bernard Lyot at Pic du Midi. We
investigate the variability of twelve spectral lines by means of the Temporal
Variance Spectrum (TVS). The selected lines probe the radial structure of the
atmosphere, from the photosphere to the outer wind. We also perform a
spectroscopic analysis with atmosphere models to derive the stellar and wind
properties, and to constrain the formation region of the selected lines. We
show that variability is observed in the wind lines of all bright giants and
supergiants, on a daily timescale. Lines formed in the photosphere are
sometimes variable, sometimes not. The dwarf stars do not show any sign of
variability. If variability is observed on a daily timescale, it can also (but
not always) be observed on hourly timescales, albeit with lower amplitude.
There is a very clear correlation between amplitude of the variability and
fraction of the line formed in the wind. Strong anti-correlations between the
different part of the temporal variance spectrum are observed. Our results
indicate that variability is stronger in lines formed in the wind. A link
between photospheric and wind variability is not obvious from our study, since
wind variability is observed whatever the level of photospheric variability.
Different photospheric lines also show different degrees of variability.Comment: 13 pages, 9 figures + appendix. A&A accepted. Figures degraded for
arxiv submissio
Sea Bed Sand Waves Studied To Help Pipeline Planners
The article cites a study that offers information on the variability of sand wave characteristics in the North Sea. The sand waves variability includes a statement that pipelines may start vibrating due to turbulence generated under the free span and navigational channels often need to be dredged for ships to pass safely. The study used multi-beam measurement of three fields in the North Sea in which sand waves occur. Moreover, the study concludes that understanding the variability of sand waves can help determine the optimal depth of a pipeline trench
The impact of spike timing variability on the signal-encoding performance of neural spiking models
It remains unclear whether the variability of neuronal spike trains in vivo arises due to biological noise sources or represents highly precise encoding of temporally varying synaptic input signals. Determining the variability of spike timing can provide fundamental insights into the nature of strategies used in the brain to represent and transmit information in the form of discrete spike trains. In this study, we employ a signal estimation paradigm to determine how variability in spike timing affects encoding of random time-varying signals. We assess this for two types of spiking models: an integrate-and-fire model with random threshold and a more biophysically realistic stochastic ion channel model. Using the coding fraction and mutual information as information-theoretic measures, we quantify the efficacy of optimal linear decoding of random inputs from the model outputs and study the relationship between efficacy and variability in the output spike train. Our findings suggest that variability does not necessarily hinder signal decoding for the biophysically plausible encoders examined and that the functional role of spiking variability depends intimately on the nature of the encoder and the signal processing task; variability can either enhance or impede decoding performance
Variability Study of High Current Junctionless Silicon Nanowire Transistors
Silicon nanowires have numerous potential applications, including transistors, memories, photovoltaics, biosensors and qubits [1]. Fabricating a nanowire with characteristics required for a specific application, however, poses some challenges. For example, a major challenge is that as the transistors dimensions are reduced, it is difficult to maintain a low off-current (Ioff) whilst simultaneously maintaining a high on-current (Ion). This can be the result of quantum mechanical tunnelling, short channel effects or statistical variability [2]. A variety of new architectures, including ultra-thin silicon-on-insulator (SOI), double gate, FinFETs, tri-gate, junctionless and gate all-around (GAA) nanowire transistors, have therefore been developed to improve the electrostatic control of the conducting channel. This is essential since a low Ioff implies low static power dissipation and it will therefore improve power management in the multi-billion transistor circuits employed globally in microprocessors, sensors and memories
Within-Bale variability study on cotton produced in Africa
Most of the cotton bales produced in the world are sold according to the analysis of their technological characteristics using standardized instrument for testing cotton (SITC). In the United States of America, periodical studies of the results variability allow to accompany the results with commercial tolerances in order to limit the frequency of claims. In Africa, no such study was conducted to our knowledge. Therefore, we studied the within-bale variability of fiber length and of its uniformity, of fiber strength, of micronaire, of reflectance and of yellowness. We took 8 samples per bale within over 400 cotton bales produced in 13 African countries during two crop seasons. Our representative sample is then composed of over 3200 fiber samples which were analyzed in controlled conditions by SITC in a laboratory fully respecting the international recommendations. We then achieved an estimation of the within-bale variability of cotton fiber technological characteristics in most of the African cotton producing countries
Blazar Optical Variability in the Palomar-QUEST Survey
We study the ensemble optical variability of 276 FSRQs and 86 BL Lacs in the
Palomar-QUEST Survey with the goal of searching for common fluctuation
properties, examining the range of behavior across the sample, and
characterizing the appearance of blazars in such a survey so that future work
can more easily identify such objects. The survey, which covers 15,000 square
degrees multiple times over 3.5 years, allows for the first ensemble blazar
study of this scale. Variability amplitude distributions are shown for the FSRQ
and BL Lac samples for numerous time lags, and also studied through structure
function analyses. Individual blazars show a wide range of variability
amplitudes, timescales, and duty cycles. Of the best sampled objects, 35% are
seen to vary by more than 0.4 magnitudes; for these, the fraction of
measurements contributing to the high amplitude variability ranges constantly
from about 5% to 80%. Blazar variability has some similarities to that of type
I quasars but includes larger amplitude fluctuations on all timescales. FSRQ
variability amplitudes are particularly similar to those of QSOs on timescales
of several months, suggesting significant contributions from the accretion disk
to the variable flux at these timescales. Optical variability amplitudes are
correlated with the maximum apparent velocities of the radio jet for the subset
of FSRQs with MOJAVE VLBA measurements, implying that the optically variable
flux's strength is typically related to that of the radio emission. We also
study CRATES radio-selected FSRQ candidates, which show similar variability
characteristics to known FSRQs; this suggests a high purity for the CRATES
sample.Comment: 29 pages, 12 figures. Accepted for publication in Ap
- …
