3,131,558 research outputs found
NOSQL design for analytical workloads: Variability matters
Big Data has recently gained popularity and has strongly questioned relational databases as universal storage systems, especially in the presence of analytical workloads. As result, co-relational alternatives, commonly known as NOSQL (Not Only SQL) databases, are extensively used for Big Data. As the primary focus of NOSQL is on performance, NOSQL databases are directly designed at the physical level, and consequently the resulting schema is tailored to the dataset and access patterns of the problem in hand. However, we believe that NOSQL design can also benefit from traditional design approaches. In this paper we present a method to design databases for analytical workloads. Starting from the conceptual model and adopting the classical 3-phase design used for relational databases, we propose a novel design method considering the new features brought by NOSQL and encompassing relational and co-relational design altogether.Peer ReviewedPostprint (author's final draft
Radio pulsar variability
Pulsars are potentially the most remarkable physical laboratories we will
ever use. Although in many senses they are extremely clean systems there are a
large number of instabilities and variabilities seen in the emission and
rotation of pulsars. These need to be recognised in order to both fully
understand the nature of pulsars, and to enable their use as precision tools
for astrophysical investigations. Here I describe these effects, discuss the
wide range of timescales involved, and consider the implications for precision
pulsar timing.Comment: Proceedings of IAUS 291 "Neutron Stars and Pulsars: Challenges and
Opportunities after 80 years", J. van Leeuwen (ed.); 6 pages, 0 figures, 2
table
Radial dependence of line profile variability in seven O9--B0.5 stars
Massive stars show a variety of spectral variability: presence of discrete
absorption components in UV P-Cygni profiles, optical line profile variability,
X-ray variability, radial velocity modulations. Our goal is to study the
spectral variability of single OB stars to better understand the relation
between photospheric and wind variability. For that, we rely on high spectral
resolution, high signal-to-noise ratio optical spectra collected with the
spectrograph NARVAL on the Telescope Bernard Lyot at Pic du Midi. We
investigate the variability of twelve spectral lines by means of the Temporal
Variance Spectrum (TVS). The selected lines probe the radial structure of the
atmosphere, from the photosphere to the outer wind. We also perform a
spectroscopic analysis with atmosphere models to derive the stellar and wind
properties, and to constrain the formation region of the selected lines. We
show that variability is observed in the wind lines of all bright giants and
supergiants, on a daily timescale. Lines formed in the photosphere are
sometimes variable, sometimes not. The dwarf stars do not show any sign of
variability. If variability is observed on a daily timescale, it can also (but
not always) be observed on hourly timescales, albeit with lower amplitude.
There is a very clear correlation between amplitude of the variability and
fraction of the line formed in the wind. Strong anti-correlations between the
different part of the temporal variance spectrum are observed. Our results
indicate that variability is stronger in lines formed in the wind. A link
between photospheric and wind variability is not obvious from our study, since
wind variability is observed whatever the level of photospheric variability.
Different photospheric lines also show different degrees of variability.Comment: 13 pages, 9 figures + appendix. A&A accepted. Figures degraded for
arxiv submissio
Variability of Active Galactic Nuclei from the Optical to X-ray Regions
Some progress in understanding AGN variability is reviewed. Reprocessing of
X-ray radiation to produce significant amounts of longer-wavelength continua
seems to be ruled out. In some objects where there has been correlated X-ray
and optical variability, the amplitude of the optical variability has exceeded
the amplitude of X-ray variability. We suggest that accelerated particles
striking material could be linking X-ray and optical variability (as in
activity in the solar chromosphere). Beaming effects could be significant in
all types of AGN. The diversity in optical/X-ray relationships at different
times in the same object, and between different objects, might be explained by
changes in geometry and directions of motion relative to our line of sight.
Linear shot-noise models of the variability are ruled out; instead there must
be large-scale organization of variability. Variability occurs on
light-crossing timescales rather than viscous timescales and this probably
rules out the standard Shakura-Sunyaev accretion disk. Radio-loud and
radio-quiet AGNs have similar continuum shapes and similar variability
properties. This suggests similar continuum origins and variability mechanisms.
Despite their extreme X-ray variability, narrow-line Seyfert 1s (NLS1s) do not
show extreme optical variability.Comment: Invited talk given at Euro Asian Astronomical Society meeting in
Moscow, June 2002. 20 pages, 4 figures. References update
On Sub-ENSO Variability
Multichannel singular spectrum analysis (MSSA) of surface zonal wind, sea surface temperature (SST), 20° isotherm depth, and surface zonal current observations (between 1990 and 2004) identifies three coupled ocean–atmosphere modes of variability in the tropical Pacific: the El Niño–Southern Oscillation (ENSO), the annual cycle, and a mode with a 14–18-month period, which is referred to as sub-ENSO in this study. The sub-ENSO mode accounts for the near 18-month (near annual) variability prior to (following) the 1997/98 El Niño event. It was strongest during this El Niño event, with SST anomalies exceeding 1°C. Sub-ENSO peak SST anomalies are ENSO-like in structure and are associated with eastward propagating heat content variations. However, the SST anomalies are preceded by and in near quadrature with relatively strong remotely forced westward propagating zonal current variations, suggesting the sub-ENSO mode arises from the zonal-advective feedback.
The sub-ENSO mode is found to exist also in an intermediate complexity model (ICM) of the tropical Pacific. A heat budget analysis of the model’s sub-ENSO mode shows it indeed arises from the zonal-advective feedback. In the model, both ENSO and sub-ENSO modes coexist, but there is a weak nonlinear interaction between them. Experiments also show that the observed changes in sub-ENSO’s characteristics may be explained by changes in the relative importance of zonal and vertical advection SST tendencies
- …
