99,109 research outputs found

    SUMMARY

    Get PDF
    Vancomycin has been documented to cause various adverse cutaneous reactions. We present a case report of a man, who developed a large localized erythematous plaque in his forearm following parenteral vancomycin therapy. We believe this to be the first reported case of such cutaneous reaction associated with parenteral vancomycin therapy. KEY WORDS: Vancomycin; parenteral therapy; adverse cutaneous reactions; localized erythematous plaque; irritant effect CASE REPOR

    Direct replacement of antibodies with molecularly imprinted polymer (MIP) nanoparticles in ELISA - development of a novel assay for vancomycin

    Get PDF
    A simple and straightforward technique for coating microplate wells with molecularly imprinted polymer nanoparticles (nanoMIPs) to develop ELISA type assays is presented here for the first time. NanoMIPs were synthesized by a solid phase approach with immobilized vancomycin (template) and characterized using Biacore 3000, dynamic light scattering and electron microscopy. Immobilization, blocking and washing conditions were optimized in microplate format. The detection of vancomycin was achieved in competitive binding experiments with a HRP-vancomycin conjugate. The assay was capable of measuring vancomycin in buffer and in blood plasma within the range 0.001-70 nM with a detection limit of 0.0025 nM (2.5 pM). The sensitivity of the assay was three orders of magnitude better than a previously described ELISA based on antibodies. In these experiments nanoMIPs have shown high affinity and minimal interference from blood plasma components. Immobilized nanoMIPs were stored for 1 month at room temperature without any detrimental effects to their binding properties. The high affinity of nanoMIPs and the lack of a requirement for cold chain logistics make them an attractive alternative to traditional antibodies used in ELIS

    Differential Activity of the Combination of Vancomycin and Amikacin on Planktonic vs. Biofilm-Growing Staphylococcus aureus Bacteria in a Hollow Fiber Infection Model

    Get PDF
    Combining currently available antibiotics to optimize their use is a promising strategy to reduce treatment failures against biofilm-associated infections. Nevertheless, most assays of such combinations have been performed in vitro on planktonic bacteria exposed to constant concentrations of antibiotics over only 24 h and the synergistic effects obtained under these conditions do not necessarily predict the behavior of chronic clinical infections associated with biofilms. To improve the predictivity of in vitro combination assays for bacterial biofilms, we first adapted a previously described Hollow-fiber (HF) infection model by allowing a Staphylococcus aureus biofilm to form before drug exposure. We then mimicked different concentration profiles of amikacin and vancomycin, similar to the free plasma concentration profiles that would be observed in patients treated daily over 5 days. We assessed the ability of the two drugs, alone or in combination, to reduce planktonic and biofilm-embedded bacterial populations, and to prevent the selection of resistance within these populations. Although neither amikacin nor vancomycin exhibited any bactericidal activity on S. aureus in monotherapy, the combination had a synergistic effect and significantly reduced the planktonic bacterial population by -3.0 to -6.0 log10 CFU/mL. In parallel, no obvious advantage of the combination, as compared to amikacin alone, was demonstrated on biofilm-embedded bacteria for which the addition of vancomycin to amikacin only conferred a further maximum reduction of 0.3 log10 CFU/mL. No resistance to vancomycin was ever found whereas a few bacteria less-susceptible to amikacin were systematically detected before treatment. These resistant bacteria, which were rapidly amplified by exposure to amikacin alone, could be maintained at a low level in the biofilm population and even suppressed in the planktonic population by adding vancomycin. In conclusion, by adapting the HF model, we were able to demonstrate the different bactericidal activities of the vancomycin and amikacin combination on planktonic and biofilm-embedded bacterial populations, suggesting that, for biofilm-associated infections, the efficacy of this combination would not be much greater than with amikacin monotherapy. However, adding vancomycin could reduce possible resistance to amikacin and provide a relevant strategy to prevent the selection of antibiotic-resistant bacteria during treatments

    The Nephrotoxicity of Vancomycin.

    Get PDF

    Genome sequencing analysis of Streptomyces coelicolor mutants that overcome the phosphate-depending vancomycin lethal effect

    Get PDF
    Abstract Background Glycopeptide antibiotics inhibit bacterial cell-wall synthesis, and are important for the treatment of infections caused by multi drug-resistant strains of enterococci, streptococci and staphylococci. The main mechanism by which bacteria resist the action of glycopeptides is by producing a modified cell-wall in which the dipeptide D-Alanine-D-Alanine is substituted by D-Alanine-D-Lactate or D-Alanine-D-Serine. Recently, it has been shown that inorganic phosphate (Pi) induces hypersensitivity to vancomycin in Streptomyces coelicolor (which is highly resistant to the antibiotic in low-Pi media). This finding was surprising because the bacterium possesses the entire set of genes responsible for vancomycin resistance (VR); including those coding for the histidine kinase/response regulator pair VanS/VanR that activates the system. Results This work shows that high Pi amounts in the medium hamper the activation of the van promoters and consequently inhibit VR in S. coelicolor; i.e. the repression effect being stronger when basic or acidic forms of the nutrient are used. In addition, this work shows that lysozyme resistance is also highly regulated by the Pi concentration in the medium. At least five different mutations contribute to the overcoming of this repression effect over VR (but not over lysozyme resistance). Therefore, the interconnection of VR and lysozyme resistance mechanisms might be inexistent or complex. In particular, two kinds of mutant in which Pi control of VR has been lost (one class expresses the van genes in a constitutive manner; the other retains inducibility by vancomycin) have been isolated and further characterized in this study. Sequencing revealed that the first class of mutation conferred a single amino acid substitution in the second transmembrane helix of the VanS protein; whereas the other class hampered the expression or activity of a putative homolog (SCO1213) to the staphylococcal GatD protein. Complementation, phenotypic and bioinformatics analyses identified SCO1213, and its upstream gene (i.e. murT), as relevant genetic determinants involved with VR in S. coelicolor. Conclusion The genomic approach of this study together with other genetic and phenotypic analyses has allowed the identification of the uncharacterized murT-gatD Streptomyces genes and the characterization of their involvement with the Pi control of VR in S. coelicolor

    An in vitro evaluation of the efficacy of tedizolid: implications for the treatment of skin and soft tissue infections

    Get PDF
    Skin and soft tissue infections (SSTI) are among the most commonly occurring infections and evidence suggests that these are increasing world-wide. The aetiology is diverse, but Staphylococcus aureus predominate and these are often resistant to antimicrobials that were previously effective. Tedizolid is a new oxazolidinone-class antibacterial indicated for the treatment of adults with SSTI caused by Gram-positive pathogens, including S. aureus. The aim of this study was to evaluate the in vitro efficacy of tedizolid in comparison to other clinically used antibacterials against antibiotic sensitive- and resistant-staphylococci, grown in planktonic cultures and as biofilms reflecting the growth of the microorganism during episodes of SSTI. Against a panel of 66 clinical staphylococci, sensitivity testing revealed that a lower concentration of tedizolid was required to inhibit the growth of staphylococci compared to linezolid, vancomycin and daptomycin; with the tedizolid MIC being 8-fold (S. aureus) or 4-fold (S. epidermidis) below that obtained for linezolid. In addition, cfr+ linezolid-resistant strains remained fully susceptible to tedizolid. Against S. aureus biofilms, 10×MIC tedizolid was superior or comparable with 10×MIC comparator agents in activity, and superior to 10×MIC linezolid against those formed by S. epidermidis (65 vs. 33% reduction, respectively). Under flow-conditions both oxazolidinones at 10×MIC statistically out-performed vancomycin in their ability to reduce the viable cell count within a S. aureus biofilm with fewer the 12% of cells surviving compared to 63% of cells. In conclusion, tedizolid offers a realistic lower-dose alternative agent to treat staphylococcal SSTI, including infections caused by multi-drug resistant strains
    corecore