41,678 research outputs found
Triple valve infective endocarditis - a late diagnosis
Behcet\u27s disease is a systemic vasculitis of unknown aetiology with cardiac involvement as well as damage to other organs. Whether the sterile valvular inflammation which occurs in this autoimmune disease predisposes to bacterial adhesion and infective endocarditis is not yet established.
We present the case of a patient with Behcet disease in which transthoracic echocardiography showed mobile masses on the aortic, tricuspid, and mitral valves, leading to multivalvular infective endocarditis diagnosis, possibly in the context of valvular inflammation.
The case presented in this article confirms observation of other studies, namely that ultrasonography plays an important role in the diagnosis and evaluation of rheumatic diseases and permits optimal management in daily practice
Understanding the Twentieth Century Decline in Chronic Conditions Among Older Men
I use a sample of Union Army veterans to trace the impact of a high infant mortality rate in area of enlistment, such infectious disease as acute respiratory infections, measles, typhoid fever, tuberculosis, rheumatic fever, diarrhea, and malaria while in the army, occupation at enlistment, and occupation at older ages on chronic respiratory problems, various heart conditions, and joint and back problems at older ages. I find that between 1900 and the present the prevalence of respiratory conditions at older ages fell by 70 percent, that of arrhythmias, murmurs, and valvular heart disease by 90 percent, atherosclerosis by 60 percent, and joint and back problems by 30 percent. Occupational shifts accounted for 15 percent of the decline in joint problems, over 75 percent of the decline in back problems, and 25 percent of the decline in respiratory difficulties. Reduced exposure to infectious disease accounted for at least 10 to 25 percent of the decline in chronic conditions. I also find that the duration of chronic conditions has remained unchanged since the early 1900s but that if disability is measured by difficulty in walking, men with chronic conditions are now less disabled than they were in the past.
Mixed Valvular Disease Following Transcatheter Aortic Valve Replacement: Quantification and Systematic Differentiation Using Clinical Measurements and Image-Based Patient‐Specific In Silico Modeling
Background: Mixed valvular disease (MVD), mitral regurgitation (MR) from pre‐existing disease in conjunction with paravalvular leak (PVL) following transcatheter aortic valve replacement (TAVR), is one of the most important stimuli for left ventricle (LV) dysfunction, associated with cardiac mortality. Despite the prevalence of MVD, the quantitative understanding of the interplay between pre‐existing MVD, PVL, LV, and post‐TAVR recovery is meager.
Methods and Results: We quantified the effects of MVD on valvular‐ventricular hemodynamics using an image‐based patient‐specific computational framework in 72 MVD patients. Doppler pressure was reduced by TAVR (mean, 77%; N=72; P<0.05), but it was not always accompanied by improvements in LV workload. TAVR had no effect on LV workload in 22 patients, and LV workload post‐TAVR significantly rose in 32 other patients. TAVR reduced LV workload in only 18 patients (25%). PVL significantly alters LV flow and increases shear stress on transcatheter aortic valve leaflets. It interacts with mitral inflow and elevates shear stresses on mitral valve and is one of the main contributors in worsening of MR post‐TAVR. MR worsened in 32 patients post‐TAVR and did not improve in 18 other patients.
Conclusions: PVL limits the benefit of TAVR by increasing LV load and worsening of MR and heart failure. Post‐TAVR, most MVD patients (75% of N=72; P<0.05) showed no improvements or even worsening of LV workload, whereas the majority of patients with PVL, but without that pre‐existing MR condition (60% of N=48; P<0.05), showed improvements in LV workload. MR and its exacerbation by PVL may hinder the success of TAVR
Systolic ejection murmurs and the left ventricular outflow tract in boxer dogs
Turbulence of various genesis in the left ventricular outflow tract (LVOT) causes systolic ejection murmurs. The prevalence of murmurs in adult boxer dogs is 50-80%, the majority of which are of low intensity. Some of the murmurs are caused by aortic stenosis (AS), while the origin of the others is unclear. The aim of this thesis was to study the physiology and clinical evaluation of systolic ejection murmurs and their relation to the development of the LVOT in boxers with and without AS. Growing and adult boxer dogs were examined by the standard methods cardiac auscultation, ECG, phonocardiography and echocardiography. Additionally, the complementary methods time-frequency and complexity analyses of heart murmurs and contrast echocardiography were evaluated. Studies on inter-observer variation in cardiac auscultation proved the importance of experience in detection and grading of low intensity ejection murmurs. Excitement of the dogs by exercise or noise stimulation (barking dog and squeaky toy) caused higher murmur grades, longer murmur duration and increased aortic flow velocities. No differences were found between diameters measured at different levels of the LVOT in growing boxers. Contrast echocardiography enhanced Doppler signals, but did not allow evaluation of myocardial blood flow. Using time-frequency analysis, duration of murmur frequency >200 Hz proved useful for differentiation between dogs with mild AS and dogs without. Combining assessment of murmur duration >200 Hz and complexity analysis using the correlation dimension (T2), a sensitivity of 94% and a specificity of 82% for differentiation between dogs with and without AS was achieved. The variability in presence and intensity of low intensity murmurs during growth was high. None of the young dogs developed AS, whereas 3 out of 16 individuals developed mild-moderate aortic insufficiency. Aortic or pulmonic flow velocities did not differ significantly between growing dogs with or without low intensity murmurs. In conclusion, the variability in presence and intensity of low intensity ejection murmurs in boxers is high during growth with no obvious progression. Both in young and adult boxers the murmur grade increased during excitement, which may be due to rapid flow in a comparatively small LVOT that has been suggested for the boxer breed. Experience is important in cardiac auscultation of low intensity murmurs. Therefore, assessment of murmur duration > 200 Hz combined with T2 analysis may be a useful complementary method for diagnosis of cardiovascular function in dogs
Early diagnosis of cardiovascular diseases in workers: role of standard and advanced echocardiography
Cardiovascular disease (CVD) still remains the main cause of morbidity and mortality and consequently early diagnosis is of paramount importance. Working conditions can be regarded as an additional risk factor for CVD. Since different aspects of the job may affect vascular health differently, it is important to consider occupation from multiple perspectives to better assess occupational impacts on health. Standard echocardiography has several targets in the cardiac population, as the assessment of myocardial performance, valvular and/or congenital heart disease, and hemodynamics. Three-dimensional echocardiography gained attention recently as a viable clinical tool in assessing left ventricular (LV) and right ventricular (RV), volume, and shape. Two-dimensional (2DSTE) and, more recently, three-dimensional speckle tracking echocardiography (3DSTE) have also emerged as methods for detection of global and regional myocardial dysfunction in various cardiovascular diseases, and applied to the diagnosis of subtle LV and RV dysfunction. Although these novel echocardiographic imaging modalities have advanced our understanding of LV and RV mechanics, overlapping patterns often show challenges that limit their clinical utility. This review will describe the current state of standard and advanced echocardiography in early detection (secondary prevention) of CVD and address future directions for this potentially important diagnostic strategy
A coupled mitral valve -- left ventricle model with fluid-structure interaction
Understanding the interaction between the valves and walls of the heart is
important in assessing and subsequently treating heart dysfunction. With
advancements in cardiac imaging, nonlinear mechanics and computational
techniques, it is now possible to explore the mechanics of valve-heart
interactions using anatomically and physiologically realistic models. This
study presents an integrated model of the mitral valve (MV) coupled to the left
ventricle (LV), with the geometry derived from in vivo clinical magnetic
resonance images. Numerical simulations using this coupled MV-LV model are
developed using an immersed boundary/finite element method. The model
incorporates detailed valvular features, left ventricular contraction,
nonlinear soft tissue mechanics, and fluid-mediated interactions between the MV
and LV wall. We use the model to simulate the cardiac function from diastole to
systole, and investigate how myocardial active relaxation function affects the
LV pump function. The results of the new model agree with in vivo measurements,
and demonstrate that the diastolic filling pressure increases significantly
with impaired myocardial active relaxation to maintain the normal cardiac
output. The coupled model has the potential to advance fundamental knowledge of
mechanisms underlying MV-LV interaction, and help in risk stratification and
optimization of therapies for heart diseases.Comment: 25 pages, 6 figure
- …
