5 research outputs found

    An Approach Ahead Product Counterfeiting Identification for BIRTHMARKS in Light of DYKIS

    Get PDF
    Programming skin pigmentation will be an exceptional trademark of a project. Thus, thinking about the birthmarks between those plaintiff What's more respondent projects gives a compelling methodology for programming counterfeiting identification. However, programming skin pigmentation era appearances two principle challenges: the non attendance of source book What's more different code confusion systems that endeavour should shroud the aspects of a system. We recommend another sort for product skin pigmentation known as progressive magic direction book grouping (DYKIS) that might a chance to be concentrated from an executable without the have for source book. Those counterfeiting identification calculation In view of our new birthmarks will be versatile to both powerless confusion strategies for example, compiler optimizations and solid confusion systems executed clinched alongside instruments for example, such that sand mark, allatori What's more upx. We recommended an instrument known as DYKIS-PD (DYKIS counterfeiting identification tool) Furthermore require on direct examinations ahead vast number about double projects

    Neural Machine Translation Inspired Binary Code Similarity Comparison beyond Function Pairs

    Full text link
    Binary code analysis allows analyzing binary code without having access to the corresponding source code. A binary, after disassembly, is expressed in an assembly language. This inspires us to approach binary analysis by leveraging ideas and techniques from Natural Language Processing (NLP), a rich area focused on processing text of various natural languages. We notice that binary code analysis and NLP share a lot of analogical topics, such as semantics extraction, summarization, and classification. This work utilizes these ideas to address two important code similarity comparison problems. (I) Given a pair of basic blocks for different instruction set architectures (ISAs), determining whether their semantics is similar or not; and (II) given a piece of code of interest, determining if it is contained in another piece of assembly code for a different ISA. The solutions to these two problems have many applications, such as cross-architecture vulnerability discovery and code plagiarism detection. We implement a prototype system INNEREYE and perform a comprehensive evaluation. A comparison between our approach and existing approaches to Problem I shows that our system outperforms them in terms of accuracy, efficiency and scalability. And the case studies utilizing the system demonstrate that our solution to Problem II is effective. Moreover, this research showcases how to apply ideas and techniques from NLP to large-scale binary code analysis.Comment: Accepted by Network and Distributed Systems Security (NDSS) Symposium 201

    value-based program characterization and its application to software plagiarism detection

    No full text
    Assoc. Comput. Mach., Spec. Interest Group Softw.; Eng. (ACM SIGSOFT); IEEE Computer Society; Technical Council on Software Engineering (TCSE)Identifying similar or identical code fragments becomes much more challenging in code theft cases where plagiarizers can use various automated code transformation techniques to hide stolen code from being detected. Previous works in this field are largely limited in that (1) most of them cannot handle advanced obfuscation techniques; (2) the methods based on source code analysis are less practical since the source code of suspicious programs is typically not available until strong evidences are collected; and (3) those depending on the features of specific operating systems or programming languages have limited applicability. Based on an observation that some critical runtime values are hard to be replaced or eliminated by semantics-preserving transformation techniques, we introduce a novel approach to dynamic characterization of executable programs. Leveraging such invariant values, our technique is resilient to various control and data obfuscation techniques. We show how the values can be extracted and refined to expose the critical values and how we can apply this runtime property to help solve problems in software plagiarism detection. We have implemented a prototype with a dynamic taint analyzer atop a generic processor emulator. Our experimental results show that the value-based method successfully discriminates 34 plagiarisms obfuscated by SandMark, plagiarisms heavily obfuscated by KlassMaster, programs obfuscated by Thicket, and executables obfuscated by Loco/Diablo. © 2011 ACM

    Value-based program characterization and its application to software plagiarism detection

    No full text
    Identifying similar or identical code fragments becomes much more challenging in code theft cases where plagiarizers can use various automated code transformation techniques to hide stolen code from being detected. Previous works in this field are largely limited in that (1) most of them cannot handle advanced obfuscation techniques; (2) the methods based on source code analysis are less practical since the source code of suspicious programs is typically not available until strong evidences are collected; and (3) those depending on the features of specific operating systems or programming languages have limited applicability. Based on an observation that some critical runtime values are hard to be replaced or eliminated by semanticspreserving transformation techniques, we introduce a novel approach to dynamic characterization of executable programs. Leveraging such invariant values, our technique is resilient to various control and data obfuscation techniques. We show how the values can be extracted and refined to expose the critical values and how we can apply this runtime property to help solve problems in software plagiarism detection. We have implemented a prototype with a dynamic taint analyzer atop a generic processor emulator. Our experimental results show that the value-based method successfully discriminates 34 plagiarisms obfuscated by SandMark, plagiarisms heavily obfuscated by KlassMaster, programs obfuscated by Thicket, and executables obfuscated by Loco/Diablo
    corecore