12 research outputs found

    Diffusion models and steady-state approximations for exponentially ergodic Markovian queues

    Full text link
    Motivated by queues with many servers, we study Brownian steady-state approximations for continuous time Markov chains (CTMCs). Our approximations are based on diffusion models (rather than a diffusion limit) whose steady-state, we prove, approximates that of the Markov chain with notable precision. Strong approximations provide such "limitless" approximations for process dynamics. Our focus here is on steady-state distributions, and the diffusion model that we propose is tractable relative to strong approximations. Within an asymptotic framework, in which a scale parameter nn is taken large, a uniform (in the scale parameter) Lyapunov condition imposed on the sequence of diffusion models guarantees that the gap between the steady-state moments of the diffusion and those of the properly centered and scaled CTMCs shrinks at a rate of n\sqrt{n}. Our proofs build on gradient estimates for solutions of the Poisson equations associated with the (sequence of) diffusion models and on elementary martingale arguments. As a by-product of our analysis, we explore connections between Lyapunov functions for the fluid model, the diffusion model and the CTMC.Comment: Published in at http://dx.doi.org/10.1214/13-AAP984 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Diffusion Models for Double-ended Queues with Renewal Arrival Processes

    Full text link
    We study a double-ended queue where buyers and sellers arrive to conduct trades. When there is a pair of buyer and seller in the system, they immediately transact a trade and leave. Thus there cannot be non-zero number of buyers and sellers simultaneously in the system. We assume that sellers and buyers arrive at the system according to independent renewal processes, and they would leave the system after independent exponential patience times. We establish fluid and diffusion approximations for the queue length process under a suitable asymptotic regime. The fluid limit is the solution of an ordinary differential equation, and the diffusion limit is a time-inhomogeneous asymmetric Ornstein-Uhlenbeck process (O-U process). A heavy traffic analysis is also developed, and the diffusion limit in the stronger heavy traffic regime is a time-homogeneous asymmetric O-U process. The limiting distributions of both diffusion limits are obtained. We also show the interchange of the heavy traffic and steady state limits

    High order steady-state diffusion approximations

    Full text link
    We derive and analyze new diffusion approximations with state-dependent diffusion coefficients to stationary distributions of Markov chains. Comparing with diffusion approximations with constant diffusion coefficients used widely in the applied probability community for the past fifty years, our new approximation achieves higher-order accuracy in terms of smooth test functions and tail probability proximity while retaining the same computational complexity. To justify the accuracy of our new approximation, we present theoretical results for the Erlang-C model and numerical results for the Erlang-C model, the hospital model proposed in Dai & Shi (2017), and the autoregressive model with random coefficient and general error distribution. Our approximations are derived recursively through Stein equations, and the theoretical results are proved using Stein's method
    corecore