3 research outputs found

    Deep hierarchical pooling design for cross-granularity action recognition

    Full text link
    In this paper, we introduce a novel hierarchical aggregation design that captures different levels of temporal granularity in action recognition. Our design principle is coarse-to-fine and achieved using a tree-structured network; as we traverse this network top-down, pooling operations are getting less invariant but timely more resolute and well localized. Learning the combination of operations in this network -- which best fits a given ground-truth -- is obtained by solving a constrained minimization problem whose solution corresponds to the distribution of weights that capture the contribution of each level (and thereby temporal granularity) in the global hierarchical pooling process. Besides being principled and well grounded, the proposed hierarchical pooling is also video-length agnostic and resilient to misalignments in actions. Extensive experiments conducted on the challenging UCF-101 database corroborate these statements

    End-to-end training of deep kernel map networks for image classification

    Full text link
    Deep kernel map networks have shown excellent performances in various classification problems including image annotation. Their general recipe consists in aggregating several layers of singular value decompositions (SVDs) -- that map data from input spaces into high dimensional spaces -- while preserving the similarity of the underlying kernels. However, the potential of these deep map networks has not been fully explored as the original setting of these networks focuses mainly on the approximation quality of their kernels and ignores their discrimination power. In this paper, we introduce a novel "end-to-end" design for deep kernel map learning that balances the approximation quality of kernels and their discrimination power. Our method proceeds in two steps; first, layerwise SVD is applied in order to build initial deep kernel map approximations and then an "end-to-end" supervised learning is employed to further enhance their discrimination power while maintaining their efficiency. Extensive experiments, conducted on the challenging ImageCLEF annotation benchmark, show the high efficiency and the out-performance of this two-step process with respect to different related methods

    Action Recognition with Deep Multiple Aggregation Networks

    Full text link
    Most of the current action recognition algorithms are based on deep networks which stack multiple convolutional, pooling and fully connected layers. While convolutional and fully connected operations have been widely studied in the literature, the design of pooling operations that handle action recognition, with different sources of temporal granularity in action categories, has comparatively received less attention, and existing solutions rely mainly on max or averaging operations. The latter are clearly powerless to fully exhibit the actual temporal granularity of action categories and thereby constitute a bottleneck in classification performances. In this paper, we introduce a novel hierarchical pooling design that captures different levels of temporal granularity in action recognition. Our design principle is coarse-to-fine and achieved using a tree-structured network; as we traverse this network top-down, pooling operations are getting less invariant but timely more resolute and well localized. Learning the combination of operations in this network -- which best fits a given ground-truth -- is obtained by solving a constrained minimization problem whose solution corresponds to the distribution of weights that capture the contribution of each level (and thereby temporal granularity) in the global hierarchical pooling process. Besides being principled and well grounded, the proposed hierarchical pooling is also video-length and resolution agnostic. Extensive experiments conducted on the challenging UCF-101, HMDB-51 and JHMDB-21 databases corroborate all these statements
    corecore