1,712 research outputs found

    Enabling technologies for MRI guided interventional procedures

    Get PDF
    This dissertation addresses topics related to developing interventional assistant devices for Magnetic Resonance Imaging (MRI). MRI can provide high-quality 3D visualization of target anatomy and surrounding tissue, but the benefits can not be readily harnessed for interventional procedures due to difficulties associated with the use of high-field (1.5T or greater) MRI. Discussed are potential solutions to the inability to use conventional mecha- tronics and the confined physical space in the scanner bore. This work describes the development of two apparently dissimilar systems that repre- sent different approaches to the same surgical problem - coupling information and action to perform percutaneous (through the skin) needle placement with MR imaging. The first system addressed takes MR images and projects them along with a surgical plan directly on the interventional site, thus providing in-situ imaging. With anatomical images and a corresponding plan visible in the appropriate pose, the clinician can use this information to perform the surgical action. My primary research effort has focused on a robotic assistant system that overcomes the difficulties inherent to MR-guided procedures, and promises safe and reliable intra-prostatic needle placement inside closed high-field MRI scanners. The robot is a servo pneumatically operated automatic needle guide, and effectively guides needles under real- time MR imaging. This thesis describes development of the robotic system including requirements, workspace analysis, mechanism design and optimization, and evaluation of MR compatibility. Further, a generally applicable MR-compatible robot controller is de- veloped, the pneumatic control system is implemented and evaluated, and the system is deployed in pre-clinical trials. The dissertation concludes with future work and lessons learned from this endeavor

    Recent Developments and Future Challenges in Medical Mixed Reality

    Get PDF
    As AR technology matures, we have seen many applicationsemerge in entertainment, education and training. However, the useof AR is not yet common in medical practice, despite the great po-tential of this technology to help not only learning and training inmedicine, but also in assisting diagnosis and surgical guidance. Inthis paper, we present recent trends in the use of AR across all med-ical specialties and identify challenges that must be overcome tonarrow the gap between academic research and practical use of ARin medicine. A database of 1403 relevant research papers publishedover the last two decades has been reviewed by using a novel re-search trend analysis method based on text mining algorithm. Wesemantically identified 10 topics including varies of technologiesand applications based on the non-biased and in-personal cluster-ing results from the Latent Dirichlet Allocatio (LDA) model andanalysed the trend of each topic from 1995 to 2015. The statisticresults reveal a taxonomy that can best describes the developmentof the medical AR research during the two decades. And the trendanalysis provide a higher level of view of how the taxonomy haschanged and where the focus will goes. Finally, based on the valu-able results, we provide a insightful discussion to the current limi-tations, challenges and future directions in the field. Our objectiveis to aid researchers to focus on the application areas in medicalAR that are most needed, as well as providing medical practitioners with latest technology advancements

    A 3D US Guidance System for Permanent Breast Seed Implantation: Development and Validation

    Get PDF
    Permanent breast seed implantation (PBSI) is a promising breast radiotherapy technique that suffers from operator dependence. We propose and have developed an intraoperative 3D ultrasound (US) guidance system for PBSI. A tracking arm mounted to a 3D US scanner registers a needle template to the image. Images were validated for linear and volumetric accuracy, and image quality in a volunteer. The tracking arm was calibrated, and the 3D image registered to the scanner. Tracked and imaged needle positions were compared to assess accuracy and a patient-specific phantom procedure guided with the system. Median/mean linear and volumetric error was ±1.1% and ±4.1%, respectively, with clinically suitable volunteer scans. Mean tracking arm error was 0.43mm and 3D US target registration error ≤0.87mm. Mean needle tip/trajectory error was 2.46mm/1.55°. Modelled mean phantom procedure seed displacement was 2.50mm. To our knowledge, this is the first reported PBSI phantom procedure with intraoperative 3D image guidance

    Development and evaluation of image-guided neuroendoscopy, with investigation of post-imaging brain distortion and accuracy of frameless stereotaxy

    Get PDF
    Neuroendoscopy enables a surgeon to operate deep within the brain whilst limiting morbidity through a minimally invasive approach. Technical advances in illumination, instrumentation and camera design, along with evidence for improved clinical outcome, have increased the indications for this technique and have ensured widespread popularity. However, broader application of neuroendoscopy is restricted by the necessity for direct vision of targets and by spatial disorientation. The aim of this investigation was to overcome these limitations by combining neuronavigation with neuroendoscopy to develop Image-Guided Neuroendoscopy (IGN). The strategy adopted for this was firstly to select, assess and validate a neuronavigation system, secondly to develop methods of endoscope tracking and frameless stereotactic implantation. Thirdly, to assess the impact of post-imaging brain distortion upon neuronavigation, fourthly to correct distortion of the endoscope image and finally to assess the use of graphics overlay in IGN. Laboratory phantom accuracy assessments revealed a mean point localisation error for the navigation system pointers of0.8mm (SD 0.4mm) with CT imaging, for the tracked endoscope of 1.5mm (SD 0.8mm) and for frameless stereotaxy of 1.3mm (SD 0.6mm). An in vivo study revealed a mean Euclidean error of 4.8mm (SD 2.0mm) for frame less stereotactic biopsy. The navigation system was evaluated through a clinical series of 100 cases, the frameless stereotactic technique was employed in 21 brain biopsy procedures and IGN evaluated in 5 procedures. The magnitude of post-imaging brain distortion was determined and correlations discovered with pre-operative image characteristics. The conclusions of this thesis are that IGN can be accomplished with acceptable accuracy, including frameless stereotactic implantation, and that the impact of postimaging brain distortion will not negate the value of IGN in most cases. Thus, the method developed for IGN has overcome both major constraints of neuroendoscopy, enabling endoscopic surgery to pass through and beyond the ventricular wall, to be undertaken safely in cases with distorted anatomy and opening the potential for wider application of these minimally invasive techniques

    Stereotactic Image-Guidance for Ablation of Malignant Liver Tumors

    Get PDF
    Stereotactic percutaneous ablation is a rapidly advancing modality for treatment of tumors in soft solid organs such as the liver. Each year, there are about 850,000 cases of primary liver cancer worldwide. Although surgical resection still is the gold standard for most cases, only 20–30% of patients are candidates for it, due to the advanced stage of the disease. Surgery can also be a huge burden to the patient and his/her quality of life might be temporarily severely reduced due to long hospital stays, complications, and slow recovery. To overcome these disadvantages, thermo-ablation of tumors of up to 3 cm has become a more viable alternative especially in the last decade, offering a potentially equally effective but minimally invasive and tissue sparing treatment alternative. In conjunction with improved CT imaging, stereotactic image-guidance techniques and image fusion technology were introduced to increase safety, efficacy, and accuracy of this treatment. Stereotactic image-guidance leads to a simple, fast, and accurate placement of the ablation probe into the liver tumor, which is a prerequisite for a complete destruction of the tumor by ablation. More and more physicians, including surgeons, consider ablation a viable alternative to resection whenever feasible. Patients undergoing such a minimally invasive treatment benefit from a shorter hospital stays, reduced complication rates, and faster recovery

    On uncertainty propagation in image-guided renal navigation: Exploring uncertainty reduction techniques through simulation and in vitro phantom evaluation

    Get PDF
    Image-guided interventions (IGIs) entail the use of imaging to augment or replace direct vision during therapeutic interventions, with the overall goal is to provide effective treatment in a less invasive manner, as an alternative to traditional open surgery, while reducing patient trauma and shortening the recovery time post-procedure. IGIs rely on pre-operative images, surgical tracking and localization systems, and intra-operative images to provide correct views of the surgical scene. Pre-operative images are used to generate patient-specific anatomical models that are then registered to the patient using the surgical tracking system, and often complemented with real-time, intra-operative images. IGI systems are subject to uncertainty from several sources, including surgical instrument tracking / localization uncertainty, model-to-patient registration uncertainty, user-induced navigation uncertainty, as well as the uncertainty associated with the calibration of various surgical instruments and intra-operative imaging devices (i.e., laparoscopic camera) instrumented with surgical tracking sensors. All these uncertainties impact the overall targeting accuracy, which represents the error associated with the navigation of a surgical instrument to a specific target to be treated under image guidance provided by the IGI system. Therefore, understanding the overall uncertainty of an IGI system is paramount to the overall outcome of the intervention, as procedure success entails achieving certain accuracy tolerances specific to individual procedures. This work has focused on studying the navigation uncertainty, along with techniques to reduce uncertainty, for an IGI platform dedicated to image-guided renal interventions. We constructed life-size replica patient-specific kidney models from pre-operative images using 3D printing and tissue emulating materials and conducted experiments to characterize the uncertainty of both optical and electromagnetic surgical tracking systems, the uncertainty associated with the virtual model-to-physical phantom registration, as well as the uncertainty associated with live augmented reality (AR) views of the surgical scene achieved by enhancing the pre-procedural model and tracked surgical instrument views with live video views acquires using a camera tracked in real time. To better understand the effects of the tracked instrument calibration, registration fiducial configuration, and tracked camera calibration on the overall navigation uncertainty, we conducted Monte Carlo simulations that enabled us to identify optimal configurations that were subsequently validated experimentally using patient-specific phantoms in the laboratory. To mitigate the inherent accuracy limitations associated with the pre-procedural model-to-patient registration and their effect on the overall navigation, we also demonstrated the use of tracked video imaging to update the registration, enabling us to restore targeting accuracy to within its acceptable range. Lastly, we conducted several validation experiments using patient-specific kidney emulating phantoms using post-procedure CT imaging as reference ground truth to assess the accuracy of AR-guided navigation in the context of in vitro renal interventions. This work helped find answers to key questions about uncertainty propagation in image-guided renal interventions and led to the development of key techniques and tools to help reduce optimize the overall navigation / targeting uncertainty

    A comprehensive method to design and assess mixed reality simulations

    Get PDF
    AbstractThe scientific literature highlights how Mixed Reality (MR) simulations allow obtaining several benefits in healthcare education. Simulation-based training, boosted by MR, offers an exciting and immersive learning experience that helps health professionals to acquire knowledge and skills, without exposing patients to unnecessary risks. High engagement, informational overload, and unfamiliarity with virtual elements could expose students to cognitive overload and acute stress. The implementation of effective simulation design strategies able to preserve the psychological safety of learners and the investigation of the impacts and effects of simulations are two open challenges to be faced. In this context, the present study proposes a method to design a medical simulation and evaluate its effectiveness, with the final aim to achieve the learning outcomes and do not compromise the students' psychological safety. The method has been applied in the design and development of an MR application to simulate the rachicentesis procedure for diagnostic purposes in adults. The MR application has been tested by involving twenty students of the 6th year of Medicine and Surgery of Università Politecnica delle Marche. Multiple measurement techniques such as self-report, physiological indices, and observer ratings of performance, cognitive and emotional states of learners have been implemented to improve the rigour of the study. Also, a user-experience analysis has been accomplished to discriminate between two different devices: Vox Gear Plus® and Microsoft Hololens®. To compare the results with a reference, students performed the simulation also without using the MR application. The use of MR resulted in increased stress measured by physiological parameters without a high increase in perceived workload. It satisfies the objective to enhance the realism of the simulation without generating cognitive overload, which favours productive learning. The user experience (UX) has found greater benefits in involvement, immersion, and realism; however, it has emphasized the technological limitations of devices such as obstruction, loss of depth (Vox Gear Plus), and narrow FOV (Microsoft Hololens)

    Planning for steerable needles in neurosurgery

    Get PDF
    The increasing adoption of robotic-assisted surgery has opened up the possibility to control innovative dexterous tools to improve patient outcomes in a minimally invasive way. Steerable needles belong to this category, and their potential has been recognised in various surgical fields, including neurosurgery. However, planning for steerable catheters' insertions might appear counterintuitive even for expert clinicians. Strategies and tools to aid the surgeon in selecting a feasible trajectory to follow and methods to assist them intra-operatively during the insertion process are currently of great interest as they could accelerate steerable needles' translation from research to practical use. However, existing computer-assisted planning (CAP) algorithms are often limited in their ability to meet both operational and kinematic constraints in the context of precise neurosurgery, due to its demanding surgical conditions and highly complex environment. The research contributions in this thesis relate to understanding the existing gap in planning curved insertions for steerable needles and implementing intelligent CAP techniques to use in the context of neurosurgery. Among this thesis contributions showcase (i) the development of a pre-operative CAP for precise neurosurgery applications able to generate optimised paths at a safe distance from brain sensitive structures while meeting steerable needles kinematic constraints; (ii) the development of an intra-operative CAP able to adjust the current insertion path with high stability while compensating for online tissue deformation; (iii) the integration of both methods into a commercial user front-end interface (NeuroInspire, Renishaw plc.) tested during a series of user-controlled needle steering animal trials, demonstrating successful targeting performances. (iv) investigating the use of steerable needles in the context of laser interstitial thermal therapy (LiTT) for maesial temporal lobe epilepsy patients and proposing the first LiTT CAP for steerable needles within this context. The thesis concludes with a discussion of these contributions and suggestions for future work.Open Acces
    • …
    corecore