10 research outputs found

    Compositional Set Invariance in Network Systems with Assume-Guarantee Contracts

    Get PDF
    This paper presents an assume-guarantee reasoning approach to the computation of robust invariant sets for network systems. Parameterized signal temporal logic (pSTL) is used to formally describe the behaviors of the subsystems, which we use as the template for the contract. We show that set invariance can be proved with a valid assume-guarantee contract by reasoning about individual subsystems. If a valid assume-guarantee contract with monotonic pSTL template is known, it can be further refined by value iteration. When such a contract is not known, an epigraph method is proposed to solve for a contract that is valid, ---an approach that has linear complexity for a sparse network. A microgrid example is used to demonstrate the proposed method. The simulation result shows that together with control barrier functions, the states of all the subsystems can be bounded inside the individual robust invariant sets.Comment: Submitted to 2019 American Control Conferenc

    Optimal Safe Controller Synthesis: A Density Function Approach

    Get PDF
    This paper considers the synthesis of optimal safe controllers based on density functions. We present an algorithm for robust constrained optimal control synthesis using the duality relationship between the density function and the value function. The density function follows the Liouville equation and is the dual of the value function, which satisfies Bellman’s optimality principle. Thanks to density functions, constraints over the distribution of states, such as safety constraints, can be posed straightforwardly in an optimal control problem. The constrained optimal control problem is then solved with a primal-dual algorithm. This formulation is extended to the case with external disturbances, and we show that the robust constrained optimal control can be solved with a modified primal-dual algorithm. We apply this formulation to the problem of finding the optimal safe controller that minimizes the cumulative intervention. An adaptive cruise control (ACC) example is used to demonstrate the efficacy of the proposed, wherein we compare the result of the density function approach with the conventional control barrier function (CBF) method

    Compositional Set Invariance in Network Systems with Assume-Guarantee Contracts

    Get PDF
    This paper presents an assume-guarantee reasoning approach to the computation of robust invariant sets for network systems. Parameterized signal temporal logic (pSTL) is used to formally describe the behaviors of the subsystems, which we use as the template for the contract. We show that set invariance can be proved with a valid assume-guarantee contract by reasoning about individual subsystems. If a valid assume-guarantee contract with monotonic pSTL template is known, it can be further refined by value iteration. When such a contract is not known, an epigraph method is proposed to solve for a contract that is valid, -an approach that has linear complexity for a sparse network. A microgrid example is used to demonstrate the proposed method. The simulation result shows that together with control barrier functions, the states of all the subsystems can be bounded inside the individual robust invariant sets

    Online decentralized decision making with inequality constraints: an ADMM approach

    Get PDF
    We discuss an online decentralized decision making problem where the agents are coupled with affine inequality constraints. Alternating Direction Method of Multipliers (ADMM) is used as the computation engine and we discuss the convergence of the algorithm in an online setting. To be specific, when decisions have to be made sequentially with a fixed time step, there might not be enough time for the ADMM to converge before the scenario changes and the decision needs to be updated. In this case, a suboptimal solution is employed and we analyze the optimality gap given the convergence condition. Moreover, in many cases, the decision making problem changes gradually over time. We propose a warm-start scheme to accelerate the convergence of ADMM and analyze the benefit of the warm-start. The proposed method is demonstrated in a decentralized multiagent control barrier function problem with simulation

    Safety-Critical Control Synthesis for network systems with Control Barrier Functions and Assume-Guarantee Contracts

    Get PDF
    This paper presents a contract based framework for safety-critical control synthesis for network systems. To handle the large state dimension of such systems, an assume-guarantee contract is used to break the large synthesis problem into smaller subproblems. Parameterized signal temporal logic (pSTL) is used to formally describe the behaviors of the subsystems, which we use as the template for the contract. We show that robust control invariant sets (RCIs) for the subsystems can be composed to form a robust control invariant set for the whole network system under a valid assume-guarantee contract. An epigraph algorithm is proposed to solve for a contract that is valid, ---an approach that has linear complexity for a sparse network, which leads to a robust control invariant set for the whole network. Implemented with control barrier function (CBF), the state of each subsystem is guaranteed to stay within the safe set. Furthermore, we propose a contingency tube Model Predictive Control (MPC) approach based on the robust control invariant set, which is capable of handling severe contingencies, including topology changes of the network. A power grid example is used to demonstrate the proposed method. The simulation result includes both set point control and contingency recovery, and the safety constraint is always satisfied

    Validating Noncooperative Control Designs Through a Lyapunov Approach

    No full text
    corecore