229,958 research outputs found

    Role of word-of-mouth for programs of voluntary vaccination: A game-theoretic approach

    Get PDF
    We propose a model describing the synergetic feedback between word-of-mouth (WoM) and epidemic dynamics controlled by voluntary vaccination. We combine a game-theoretic model for the spread of WoM and a compartmental model describing SIRSIR disease dynamics in the presence of a program of voluntary vaccination. We evaluate and compare two scenarios, depending on what WoM disseminates: (1) vaccine advertising, which may occur whether or not an epidemic is ongoing and (2) epidemic status, notably disease prevalence. Understanding the synergy between the two strategies could be particularly important for organizing voluntary vaccination campaigns. We find that, in the initial phase of an epidemic, vaccination uptake is determined more by vaccine advertising than the epidemic status. As the epidemic progresses, epidemic status become increasingly important for vaccination uptake, considerably accelerating vaccination uptake toward a stable vaccination coverage.Comment: 10 pages, 2 figure

    Modelling the hepatitis B vaccination programme in prisons

    Get PDF
    A vaccination programme offering hepatitis B (HBV) vaccine at reception into prison has been introduced into selected prisons in England and Wales. Over the coming years it is anticipated this vaccination programme will be extended. A model has been developed to assess the potential impact of the programme on the vaccination coverage of prisoners, ex-prisoners, and injecting drug users (IDUs). Under a range of coverage scenarios, the model predicts the change over time in the vaccination status of new entrants to prison, current prisoners and IDUs in the community. The model predicts that at baseline in 2012 57% of the IDU population will be vaccinated with up to 72% being vaccinated depending on the vaccination scenario implemented. These results are sensitive to the size of the IDU population in England and Wales and the average time served by an IDU during each prison visit. IDUs that do not receive HBV vaccine in the community are at increased risk from HBV infection. The HBV vaccination programme in prisons is an effective way of vaccinating this hard-to-reach population although vaccination coverage on prison reception must be increased to achieve this

    Modeling the Influence of Environment and Intervention on Cholera in Haiti

    Get PDF
    We propose a simple model with two infective classes in order to model the cholera epidemic in Haiti. We include the impact of environmental events (rainfall, temperature and tidal range) on the epidemic in the Artibonite and Ouest regions by introducing terms in the transmission rate that vary with environmental conditions. We fit the model on weekly data from the beginning of the epidemic until December 2013, including the vaccination programs that were recently undertaken in the Ouest and Artibonite regions. We then modified these projections excluding vaccination to assess the programs' effectiveness. Using real-time daily rainfall, we found lag times between precipitation events and new cases that range from 3.4 to 8.4 weeks in Artibonite and 5.1 to 7.4 in Ouest. In addition, it appears that, in the Ouest region, tidal influences play a significant role in the dynamics of the disease. Intervention efforts of all types have reduced case numbers in both regions; however, persistent outbreaks continue. In Ouest, where the population at risk seems particularly besieged and the overall population is larger, vaccination efforts seem to be taking hold more slowly than in Artibonite, where a smaller core population was vaccinated. The models including the vaccination programs predicted that a year and six months later, the mean number of cases in Artibonite would be reduced by about two thousand cases, and in Ouest by twenty four hundred cases below that predicted by the models without vaccination. We also found that vaccination is best when done in the early spring, and as early as possible in the epidemic. Comparing vaccination between the first spring and the second, there is a drop of about 40% in the case reduction due to the vaccine and about 10% per year after that

    Optimal Vaccine Allocation to Control Epidemic Outbreaks in Arbitrary Networks

    Full text link
    We consider the problem of controlling the propagation of an epidemic outbreak in an arbitrary contact network by distributing vaccination resources throughout the network. We analyze a networked version of the Susceptible-Infected-Susceptible (SIS) epidemic model when individuals in the network present different levels of susceptibility to the epidemic. In this context, controlling the spread of an epidemic outbreak can be written as a spectral condition involving the eigenvalues of a matrix that depends on the network structure and the parameters of the model. We study the problem of finding the optimal distribution of vaccines throughout the network to control the spread of an epidemic outbreak. We propose a convex framework to find cost-optimal distribution of vaccination resources when different levels of vaccination are allowed. We also propose a greedy approach with quality guarantees for the case of all-or-nothing vaccination. We illustrate our approaches with numerical simulations in a real social network

    Mathematical Model of Vaccine Noncompliance

    Get PDF
    Vaccine scares can prevent individuals from complying with a vaccination program. When compliance is high, the critical vaccination proportion is close to being met, and herd immunity occurs, bringing the disease incidence to extremely low levels. Thus, the risk to vaccinate may seem greater than the risk of contracting the disease, inciting vaccine noncompliance. A previous behavior-incidence ordinary differential equation model shows both social learning and feedback contributing to changes in vaccinating behavior, where social learning is the perceived risk of vaccinating and feedback repre- sents new cases of the disease. In our study, we compared several candidate models to more simply illustrate both vaccination coverage and incidence through social learn- ing and feedback. The behavior model uses logistic growth and exponential decay to describe the social learning aspect as well as different functional forms of the disease prevalence to represent feedback. Each candidate model was tested by fitting it to data from the pertussis vaccine scare in England and Wales in the 1970s. Our most parsimonious model shows a superior fit to the vaccine coverage curve during the scare

    Stochastic epidemic models: a survey

    Full text link
    This paper is a survey paper on stochastic epidemic models. A simple stochastic epidemic model is defined and exact and asymptotic model properties (relying on a large community) are presented. The purpose of modelling is illustrated by studying effects of vaccination and also in terms of inference procedures for important parameters, such as the basic reproduction number and the critical vaccination coverage. Several generalizations towards realism, e.g. multitype and household epidemic models, are also presented, as is a model for endemic diseases.Comment: 26 pages, 4 figure

    Heterogeneity in the spread and control of infectious disease: consequences for the elimination of canine rabies

    Get PDF
    Understanding the factors influencing vaccination campaign effectiveness is vital in designing efficient disease elimination programmes. We investigated the importance of spatial heterogeneity in vaccination coverage and human-mediated dog movements for the elimination of endemic canine rabies by mass dog vaccination in Region VI of the Philippines (Western Visayas). Household survey data was used to parameterise a spatially-explicit rabies transmission model with realistic dog movement and vaccination coverage scenarios, assuming a basic reproduction number for rabies drawn from the literature. This showed that heterogeneous vaccination reduces elimination prospects relative to homogeneous vaccination at the same overall level. Had the three vaccination campaigns completed in Region VI in 2010–2012 been homogeneous, they would have eliminated rabies with high probability. However, given the observed heterogeneity, three further campaigns may be required to achieve elimination with probability 0.95. We recommend that heterogeneity be reduced in future campaigns through targeted efforts in low coverage areas, even at the expense of reduced coverage in previously high coverage areas. Reported human-mediated dog movements did not reduce elimination probability, so expending limited resources on restricting dog movements is unnecessary in this endemic setting. Enhanced surveillance will be necessary post-elimination, however, given the reintroduction risk from long-distance dog movements
    corecore