1,701 research outputs found

    The impact of early and late literacy on the functional connectivity of vision and

    Get PDF
    Introduction: Learning to read leads to functional and structural changes in the cortical regions related to vision and language. The visual word-form area (VWFA) is though to play a key role in the interaction between these two systems (Dehaene et al. 2015). For instance, the VWFA is activated not only from bottom-up during reading but also in a top-down manner during speech listening without visual stimulation (Dehaene et al. 2010). The objective of this study was twofolded: how literacy acquisition affects four intrinsic functional connectivity networks related to vision and language (a dorsal language [DLN], a bilateral auditory [AN], a low-level [LLVN] and a high-level visual [HLVN] networks); and to explore the role of the VWFA as an interface between high-level vision and language functions. Methods: Independent component analysis (ICA) was applied to functional magnetic resonance imaging data from 40 adult participants with variable levels of literacy (illiterate, late literate and early literate). The four functional connectivity networks were compared across groups using dual-regression (Filippini et al. 2009). In addition, we directly explored the functional connectivity between the VWFA and each of the studied networks. Finally, the strengh of connectivity between the VWFA and each network was compared across groups and correlated with individual reading fluency scores. Results: ICA produced 40 networks, and spatial crosscorrelation was used to identify the four networks of interest. Literacy was positively correlated with increased connectivity within the four networks. A major difference separating early literate from illiterate and late literate subjects was found. The connectivity between the VWFA and the DLN increased with literacy. Conversely, the strength of connectivity between the VWFA and the HLVN correlated negatively with literacy. Finally, , the HLVN-VWFA connectivity was negatively correlated with reading scores while the connectivity between the DLN-VWFA was positively correlated with reading scores. Discussion:Literacy has a strong influence on the visual and language functional networks. Literacy modifies the VWFA connectivity, by making it functionally closer to the language system, and more distinct from other associative visual areas that do not contribute to the reading process. The current results suggest that early acquisition of literacy plays a critical role for the tuning of the functional brain architecture. References: -Dehaene S et al. Nat Rev Neurosci.(2015)16:234 244 -Dehaene S et al. Science.(2010)330:1359–1364 -Filippini N et al. PNAS.(2009)106, 7209–7214Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    The VWFA: It\u27s not just for words anymore

    Get PDF
    Reading is an important but phylogenetically new skill. While neuroimaging studies have identified brain regions used in reading, it is unclear to what extent these regions become specialized for use predominantly in reading vs. other tasks. Over the past several years, our group has published three studies addressing this question, particularly focusing on whether the putative visual word form area (VWFA) is used predominantly in reading, or whether it is used more generally in a number of tasks. Our three studies utilize a range of neuroimaging techniques, including task based fMRI experiments, a seed based resting state functional connectivity (RSFC) experiment, and a network based RSFC experiment. Overall, our studies indicate that the VWFA is not used specifically or even predominantly for reading. Rather the VWFA is a general use region that has processing properties making it particularly useful for reading, though it continues to be used in any task that requires its general processing properties. Our network based RSFC analysis extends this finding to other regions typically thought to be used predominantly for reading. Here, we review these findings and describe how the three studies complement each other. Then, we argue that conceptualizing the VWFA as a brain region with specific processing characteristics rather than a brain region devoted to a specific stimulus class, allows us to better explain the activity seen in this region during a variety of tasks. Having this type of conceptualization not only provides a better understanding of the VWFA but also provides a framework for understanding other brain regions, as it affords an explanation of function that is in keeping with the long history of studying the brain in terms of the type of information processing performed (Posner, 1978)

    Word contexts enhance the neural representation of individual letters in early visual cortex

    No full text
    Visual context facilitates perception, but how this is neurally implemented remains unclear. One example of contextual facilitation is found in reading, where letters are more easily identified when embedded in a word. Bottom-up models explain this word advantage as a post-perceptual decision bias, while top-down models propose that word contexts enhance perception itself. Here, we arbitrate between these accounts by presenting words and nonwords and probing the representational fidelity of individual letters using functional magnetic resonance imaging. In line with top-down models, we find that word contexts enhance letter representations in early visual cortex. Moreover, we observe increased coupling between letter information in visual cortex and brain activity in key areas of the reading network, suggesting these areas may be the source of the enhancement. Our results provide evidence for top-down representational enhancement in word recognition, demonstrating that word contexts can modulate perceptual processing already at the earliest visual regions

    Visual processing of words in a patient with visual form agnosia: A behavioural and fMRI study

    Get PDF
    Patient D.F. has a profound and enduring visual form agnosia due to a carbon monoxide poisoning episode suffered in 1988. Her inability to distinguish simple geometric shapes or single alphanumeric characters can be attributed to a bilateral loss of cortical area LO, a loss that has been well established through structural and functional fMRI. Yet despite this severe perceptual deficit, D.F. is able to “guess” remarkably well the identity of whole words. This paradoxical finding, which we were able to replicate more than 20 years following her initial testing, raises the question as to whether D.F. has retained specialized brain circuitry for word recognition that is able to function to some degree without the benefit of inputs from area LO. We used fMRI to investigate this, and found regions in the left fusiform gyrus, left inferior frontal gyrus, and left middle temporal cortex that responded selectively to words. A group of healthy control subjects showed similar activations. The left fusiform activations appear to coincide with the area commonly named the visual word form area (VWFA) in studies of healthy individuals, and appear to be quite separate from the fusiform face area. We hypothesize that there is a route to this area that lies outside area LO, and which remains relatively unscathed in D.F

    On spatial selectivity and prediction across conditions with fMRI

    Get PDF
    Researchers in functional neuroimaging mostly use activation coordinates to formulate their hypotheses. Instead, we propose to use the full statistical images to define regions of interest (ROIs). This paper presents two machine learning approaches, transfer learning and selection transfer, that are compared upon their ability to identify the common patterns between brain activation maps related to two functional tasks. We provide some preliminary quantification of these similarities, and show that selection transfer makes it possible to set a spatial scale yielding ROIs that are more specific to the context of interest than with transfer learning. In particular, selection transfer outlines well known regions such as the Visual Word Form Area when discriminating between different visual tasks.Comment: PRNI 2012 : 2nd International Workshop on Pattern Recognition in NeuroImaging, London : United Kingdom (2012

    Connectivity precedes function in the development of the visual word form area

    Get PDF
    What determines the cortical location at which a given functionally specific region will arise in development? We tested the hypothesis that functionally specific regions develop in their characteristic locations because of pre-existing differences in the extrinsic connectivity of that region to the rest of the brain. We exploited the visual word form area (VWFA) as a test case, scanning children with diffusion and functional imaging at age 5, before they learned to read, and at age 8, after they learned to read. We found the VWFA developed functionally in this interval and that its location in a particular child at age 8 could be predicted from that child's connectivity fingerprints (but not functional responses) at age 5. These results suggest that early connectivity instructs the functional development of the VWFA, possibly reflecting a general mechanism of cortical development.National Institutes of Health (U.S.) (Grant F32HD079169)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Grant F32HD079169)National Institutes of Health (U.S.) (Grant R01HD067312)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Grant R01HD067312

    Too little, too late: reduced visual span and speed characterize pure alexia

    Get PDF
    Whether normal word reading includes a stage of visual processing selectively dedicated to word or letter recognition is highly debated. Characterizing pure alexia, a seemingly selective disorder of reading, has been central to this debate. Two main theories claim either that 1) Pure alexia is caused by damage to a reading specific brain region in the left fusiform gyrus or 2) Pure alexia results from a general visual impairment that may particularly affect simultaneous processing of multiple items. We tested these competing theories in 4 patients with pure alexia using sensitive psychophysical measures and mathematical modeling. Recognition of single letters and digits in the central visual field was impaired in all patients. Visual apprehension span was also reduced for both letters and digits in all patients. The only cortical region lesioned across all 4 patients was the left fusiform gyrus, indicating that this region subserves a function broader than letter or word identification. We suggest that a seemingly pure disorder of reading can arise due to a general reduction of visual speed and span, and explain why this has a disproportionate impact on word reading while recognition of other visual stimuli are less obviously affected

    Learning to read recycles visual cortical networks without destruction

    No full text
    Learning to read is associated with the appearance of an orthographically sensitive brain region known as the visual word form area. It has been claimed that development of this area proceeds by impinging upon territory otherwise available for the processing of culturally relevant stimuli such as faces and houses. In a large-scale functional magnetic resonance imaging study of a group of individuals of varying degrees of literacy (from completely illiterate to highly literate), we examined cortical responses to orthographic and nonorthographic visual stimuli. We found that literacy enhances responses to other visual input in early visual areas and enhances representational similarity between text and faces, without reducing the extent of response to nonorthographic input. Thus, acquisition of literacy in childhood recycles existing object representation mechanisms but without destructive competition

    Auditory Selective Attention to Speech Modulates Activity in the Visual Word Form Area

    Get PDF
    Selective attention to speech versus nonspeech signals in complex auditory input could produce top-down modulation of cortical regions previously linked to perception of spoken, and even visual, words. To isolate such top-down attentional effects, we contrasted 2 equally challenging active listening tasks, performed on the same complex auditory stimuli (words overlaid with a series of 3 tones). Instructions required selectively attending to either the speech signals (in service of rhyme judgment) or the melodic signals (tone-triplet matching). Selective attention to speech, relative to attention to melody, was associated with blood oxygenation level-dependent (BOLD) increases during functional magnetic resonance imaging (fMRI) in left inferior frontal gyrus, temporal regions, and the visual word form area (VWFA). Further investigation of the activity in visual regions revealed overall deactivation relative to baseline rest for both attention conditions. Topographic analysis demonstrated that while attending to melody drove deactivation equivalently across all fusiform regions of interest examined, attending to speech produced a regionally specific modulation: deactivation of all fusiform regions, except the VWFA. Results indicate that selective attention to speech can topographically tune extrastriate cortex, leading to increased activity in VWFA relative to surrounding regions, in line with the well-established connectivity between areas related to spoken and visual word perception in skilled reader
    corecore