10,929 research outputs found

    WIMP astronomy and particle physics with liquid-noble and cryogenic direct-detection experiments

    Get PDF
    Once weakly-interacting massive particles (WIMPs) are unambiguously detected in direct-detection experiments, the challenge will be to determine what one may infer from the data. Here, I examine the prospects for reconstructing the local speed distribution of WIMPs in addition to WIMP particle-physics properties (mass, cross sections) from next-generation cryogenic and liquid-noble direct-detection experiments. I find that the common method of fixing the form of the velocity distribution when estimating constraints on WIMP mass and cross sections means losing out on the information on the speed distribution contained in the data and may lead to biases in the inferred values of the particle-physics parameters. I show that using a more general, empirical form of the speed distribution can lead to good constraints on the speed distribution. Moreover, one can use Bayesian model-selection criteria to determine if a theoretically-inspired functional form for the speed distribution (such as a Maxwell-Boltzmann distribution) fits better than an empirical model. The shape of the degeneracy between WIMP mass and cross sections and their offset from the true values of those parameters depends on the hypothesis for the speed distribution, which has significant implications for consistency checks between direct-detection and collider data. In addition, I find that the uncertainties on theoretical parameters depends sensitively on the upper end of the energy range used for WIMP searches. Better constraints on the WIMP particle-physics parameters and speed distribution are obtained if the WIMP search is extended to higher energy (~ 1 MeV).Comment: 25 pages, 27 figures, matches published versio

    TeV dark matter in the disk

    Full text link
    DAMA annual modulation data and, CoGeNT, CDMS-II, EDELWEISS-II, CRESST excesses of events over the expected background are reanalyzed in terms of a dark matter particle signal considering the case of a rotating halo. It is found that DAMA data favor the configurations of very high mass dark matter particles in a corotating cold flux. A similar high-mass/low-velocity solution would be compatible with the observed events in CoGeNT, CDMS-II, EDELWEISS-II and CRESST experiments and could be of interest in the light of the positron/electron excess measured by Pamela and Fermi in cosmic rays.Comment: 5 pages, 7 figure

    Getting the astrophysics and particle physics of dark matter out of next-generation direct detection experiments

    Get PDF
    The next decade will bring massive new data sets from experiments of the direct detection of weakly interacting massive particle (WIMP) dark matter. The primary goal of these experiments is to identify and characterize the dark-matter particle species. However, mapping the data sets to the particle-physics properties of dark matter is complicated not only by the considerable uncertainties in the dark-matter model, but by its poorly constrained local distribution function (the "astrophysics" of dark matter). In this Letter, I propose a shift in how to do direct-detection data analysis. I show that by treating the astrophysical and particle physics uncertainties of dark matter on equal footing, and by incorporating a combination of data sets into the analysis, one may recover both the particle physics and astrophysics of dark matter. Not only does such an approach yield more accurate estimates of dark-matter properties, but may illuminate how dark matter coevolves with galaxies.Comment: 4 pages, 4 figures, replaced to match version accepted by Phys. Rev.

    Involvement of heparanase in the pathogenesis of acute kidney injury: Nephroprotective effect of PG545

    Get PDF
    Despite the high prevalence of acute kidney injury (AKI) and its association with increased morbidity and mortality, therapeutic approaches for AKI are disappointing. This is largely attributed to poor understanding of the pathogenesis of AKI. Heparanase, an endoglycosidase that cleaves heparan sulfate, is involved in extracellular matrix turnover, inflammation, kidney dysfunction, diabetes, fibrosis, angiogenesis and cancer progression. The current study examined the involvement of heparanase in the pathogenesis of ischemic reperfusion (I/R) AKI in a mouse model and the protective effect of PG545, a potent heparanase inhibitor. I/R induced tubular damage and elevation in serum creatinine and blood urea nitrogen to a higher extent in heparanase over-expressing transgenic mice vs. wild type mice. Moreover, TGF-\u3b2, vimentin, fibronectin and \u3b1-smooth muscle actin, biomarkers of fibrosis, and TNF\u3b1, IL6 and endothelin-1, biomarkers of inflammation, were upregulated in I/R induced AKI, primarily in heparanase transgenic mice, suggesting an adverse role of heparanase in the pathogenesis of AKI. Remarkably, pretreatment of mice with PG545 abolished kidney dysfunction and the up-regulation of heparanase, pro-inflammatory (i.e., IL-6) and pro-fibrotic (i.e., TGF-\u3b2) genes induced by I/R. The present study provides new insights into the involvement of heparanase in the pathogenesis of ischemic AKI.Our results demonstrate that heparanase plays a deleterious role in the development of renal injury and kidney dysfunction,attesting heparanase inhibition as a promising therapeutic approach for AKI

    The Dark Disk of the Milky Way

    Full text link
    Massive satellite accretions onto early galactic disks can lead to the deposition of dark matter in disk-like configurations that co-rotate with the galaxy. This phenomenon has potentially dramatic consequences for dark matter detection experiments. We utilize focused, high-resolution simulations of accretion events onto disks designed to be Galaxy analogues, and compare the resultant disks to the morphological and kinematic properties of the Milky Way's thick disk in order to bracket the range of co-rotating accreted dark matter. We find that the Milky Way's merger history must have been unusually quiescent compared to median LCDM expectations and therefore its dark disk must be relatively small: the fraction of accreted dark disk material near the Sun is about 20% of the host halo density or smaller and the co-rotating dark matter fraction near the Sun, defined as particles moving with a rotational velocity lag less than 50 km/s, is enhanced by about 30% or less compared to a standard halo model. Such a dark disk could contribute dominantly to the low energy (of order keV for a dark matter particle with mass 100 GeV) nuclear recoil event rate of direct dectection experiments, but it will not change the likelihood of detection significantly. These dark disks provide testable predictions of weakly-interacting massive particle dark matter models and should be considered in detailed comparisons to experimental data. Our findings suggest that the dark disk of the Milky Way may provide a detectable signal for indirect detection experiments, contributing up to about 25% of the dark matter self-annihilation signal in the direction of the center of the Galaxy, lending the signal a noticeably oblate morphology.Comment: 11 pages, 6 figures, 1 table; submitted to Ap

    Is the Dark Disc contribution to Dark Matter Signals important ?

    Full text link
    Recent N-body simulations indicate that a thick disc of dark matter, co-rotating with the stellar disc, forms in a galactic halo after a merger at a redshift z<2z<2. The existence of such a dark disc component in the Milky Way could affect dramatically dark matter signals in direct and indirect detection. In this letter, we discuss the possible signal enhancement in connection with the characteristics of the local velocity distributions. We argue that the enhancement is rather mild, but some subtle effects may arise. In particular, the annual modulation observed by DAMA becomes less constrained by other direct detection experiments

    Improved determination of the WIMP mass from direct detection data

    Full text link
    Direct detection experiments searching for weakly interacting massive particle (WIMP) dark matter typically use a simplified model of the Galactic halo to derive parameter constraints. However, there is strong evidence that this Standard Halo Model is not a good approximation to our Galaxy. We discuss previous attempts to extract the WIMP mass, cross-section and speed distribution from direct detection data and show that these lead to significant biases in the reconstructed parameter values. We develop and test an alternative model-independent method based on parametrising the momentum distribution of the WIMPs. This allows us to limit the analysis only to those regions of momentum space to which the experiments are sensitive. The method can be applied to a single experiment to extract information about the distribution function, as well as information on the degenerate WIMP mass and interaction cross-section combined in a single parameter. This degeneracy can be broken by including data from additional experiments, meaning that the WIMP mass and speed distribution can be recovered. We test the momentum parametrisation method using mock datasets from proposed ton-scale direct detection experiments, showing that it exhibits improved coverage properties over previous methods, as well as significantly reduced bias. We are also able to accurately reconstruct the shape of the WIMP speed distribution but distinguishing between different underlying distributions remains difficult.Comment: 15 pages, 16 figures. VL-2 benchmark velocity distribution modified slightly; corrected typo in XENON1T exposure time; conclusions unchanged. Matches version published in PR

    The kinematic identification of a thick stellar disc in M31

    Full text link
    We present the first characterization of a thick disc component in the Andromeda galaxy (M31) using kinematic data from the DEIMOS multi-object spectrograph instrument on Keck II. Using 21 fields in the South West of the galaxy, we measure the lag of this component with respect to the thin disc, as well as the dispersion, metallicity and scale length of the component. We find an average lag between the two components of =46.0+/-3.9km/s. The velocity dispersion of the thick disc is sigma_{thick}=50.8+/-1.9km/s, greater than the value of dispersion we determine for the thin disc, sigma_{thin}=35.7+/-1.0km/s. The thick disc is more metal poor than the thin disc, with [Fe/H]_{spec}=-1.0+/-0.1 compared to [Fe/H]_{spec}=-0.7+/-0.05 for the thin disc. We measure a radial scale length of the thin and thick discs of h_r=7.3+/-1.0 kpc and h_r=8.0+/-1.2 kpc. From this, we infer scale heights for both discs of 1.1+/-0.2 kpc and 2.8+/-0.6 kpc, both of which are ~2--3 times larger than those observed in the Milky Way. We estimate a mass range for the thick disc component of 2.4x10^{10}Msun< M_{*,thick} <4.1x10^{10}Msun. This value provides a useful constraint on possible formation mechanisms, as any proposed method for forming a thick disc must be able to heat (or deposit) at least this amount of material.Comment: 22 pages, 17 figures. Minor revisions made to text following referee report. Accepted for publication in MNRA

    On the accretion origin of a vast extended stellar disk around the Andromeda galaxy

    Full text link
    We present the discovery of an inhomogenous, low-surface brightness, extended disk-like structure around the Andromeda galaxy (M31) based on a large kinematic survey of more than 2800 stars with the Keck/DEIMOS spectrograph. The stellar structure spans radii from 15 kpc out to ~40 kpc, with detections out to R ~ 70 kpc. The constituent stars lag the expected velocity of circular orbits in the plane of the M31 disk by ~40 kms and have a velocity dispersion of ~30 kms. The color range on the upper RGB shows a large spread indicative of a population with a significant range of metallicity. The mean metallicity of the population, measured from Ca II equivalent widths, is [Fe/H] = -0.9 +/- 0.2. The morphology of the structure is irregular at large radii, and shows a wealth of substructures which must be transitory in nature, and are almost certainly tidal debris. The presence of these substructures indicates that the global entity was formed by accretion. This extended disk follows smoothly on from the central parts of M31 disk with an exponential density law of scale-length of 5.1 +/- 0.1 kpc, similar to that of the bright inner disk. The population possesses similar kinematic and abundance properties over the entire region where it is detected in the survey. We estimate that the structure accounts for approximately 10% of the total luminosity of the M31 disk, and given the huge scale, contains ~30% of the total disk angular momentum. This finding indicates that at least some galactic stellar disks are vastly larger than previously thought and are formed, at least in their outer regions, primarily by accretion. [abridged]Comment: 20 pages, 30 figures, ApJ submitte
    corecore