22,047 research outputs found

    Empirical multi-wavelength prediction method for very high energy gamma-ray emitting BL Lacs

    Full text link
    Aim: We have collected the most complete multi-wavelength (6.0−6.0×10−18cm6.0 - 6.0 \times 10^{-18} cm) dataset of very high energy (VHE) γ\gamma-ray emitting (TeV) BL Lacs, which are the most numerous extragalactic VHE sources. Using significant correlations between different bands, we aim to identify the best TeV BL Lac candidates that can be discovered by the current and next generation of imaging air Cherenkov telescopes. Methods: We formed five datasets from lower energy data, i.e. radio, mid-infrared, optical, X-rays, and GeV γ\gamma-ray, and five VHE γ\gamma-ray datasets to perform a correlation study between different bands and to construct the prediction method. The low energy datasets were averaged for individual sources, while the VHE γ\gamma-ray data were divided into subsets according to the flux state of the source. We then looked for significant correlations and determined their best-fit parameters. Using the best-fit parameters we predicted the level of VHE γ\gamma-ray flux for a sample of 182 BL Lacs, which have not been detected at TeV energies. We identified the most promising TeV BL Lac candidates based on the predicted VHE γ\gamma-ray flux for each source. Results: We found 14 significant correlations between radio, mid-infrared, optical, γ\gamma-ray, and VHE γ\gamma-ray bands. The correlation between optical and VHE γ\gamma-ray luminosity is established for the first time. We attribute this to the more complete sample and more accurate handling of host galaxy flux in our work. We found nine BL Lac candidates whose predicted VHE γ\gamma-ray flux is high enough for detection in less than 25 hours with current imaging air Cherenkov telescopes.Comment: 10 pages, 2 figures, 4 Table

    Characterizing the gamma-ray long-term variability of PKS 2155-304 with H.E.S.S. and Fermi-LAT

    Get PDF
    Studying the temporal variability of BL Lac objects at the highest energies provides unique insights into the extreme physical processes occurring in relativistic jets and in the vicinity of super-massive black holes. To this end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in the high (HE, 100 MeV 200 GeV) gamma-ray domain. Over the course of ~9 yr of H.E.S.S observations the VHE light curve in the quiescent state is consistent with a log-normal behavior. The VHE variability in this state is well described by flicker noise (power-spectral-density index {\ss}_VHE = 1.10 +0.10 -0.13) on time scales larger than one day. An analysis of 5.5 yr of HE Fermi LAT data gives consistent results ({\ss}_HE = 1.20 +0.21 -0.23, on time scales larger than 10 days) compatible with the VHE findings. The HE and VHE power spectral densities show a scale invariance across the probed time ranges. A direct linear correlation between the VHE and HE fluxes could neither be excluded nor firmly established. These long-term-variability properties are discussed and compared to the red noise behavior ({\ss} ~ 2) seen on shorter time scales during VHE-flaring states. The difference in power spectral noise behavior at VHE energies during quiescent and flaring states provides evidence that these states are influenced by different physical processes, while the compatibility of the HE and VHE long-term results is suggestive of a common physical link as it might be introduced by an underlying jet-disk connection.Comment: 11 pages, 16 figure
    • …
    corecore