1,225,473 research outputs found
Turbulent Velocity Structure in Molecular Clouds
We compare velocity structure in the Polaris Flare molecular cloud at scales
ranging from 0.015 pc to 20 pc to simulations of supersonic hydrodynamic and
MHD turbulence computed with the ZEUS MHD code. We use several different
statistical methods to compare models and observations. The Delta-variance
wavelet transform is most sensitive to characteristic scales and scaling laws,
but is limited by a lack of intensity weighting. The scanning-beam
size-linewidth relation is more robust with respect to noisy data. Obtaining
the global velocity scaling behaviour requires that large-scale trends in the
maps not be removed but treated as part of the turbulent cascade. We compare
the true velocity PDF in our models to velocity centroids and average line
profiles in optically thin lines, and find that the line profiles reflect the
true PDF better unless the map size is comparable to the total line-of-sight
thickness of the cloud. Comparison of line profiles to velocity centroid PDFs
can thus be used to measure the line-of-sight depth of a cloud. The observed
density and velocity structure is consistent with supersonic turbulence with a
driving scale at or above the size of the molecular cloud and dissipative
processes below 0.05 pc. Ambipolar diffusion could explain the dissipation. The
velocity PDFs exclude small-scale driving such as that from stellar outflows as
a dominant process in the observed region. In the models, large-scale driving
is the only process that produces deviations from a Gaussian PDF shape
consistent with observations. Strong magnetic fields impose a clear anisotropy
on the velocity field, reducing the velocity variance in directions
perpendicular to the field. (abridged)Comment: 21 pages, 24 figures, accepted by A&A, with some modifications,
including change of claimed direct detection of dissipation scale to an upper
limi
Imaging 3D seismic velocity along the seismogenic zone of Algarve region (southern Portugal)
The present seismic tomographic study is focused around Algarve region, in South of Portugal. To locate the seismic events and find the local velocity structure of epicentral area, the P and S arrival times at 38 stations are used. The data used in this study were obtained during the Algarve campaign which worked from January/2006 to July/2007. The preliminary estimate of origin times and hypocentral coordinates are determined by the Hy- poinverse program. Linearized inversion procedure was applied to comprise the following two steps: 1) finding the minimum 1D velocity model using Velest and 2) simultaneous relocation of hypocenters and determination of local velocity structure. The velocity model we have reached is a 10 layer model which gave the lowest RMS, after several runnings of eight different velocity models that we used “a priori”. The model parameterization assumes a continuous velocity field between 4.5 km/s and 7.0 km/s until 30 km depth. The earth structure is represented in 3D by velocity at discrete points, and velocity at any intervening point is determined by linear interpolation among the surrounding eight grid points. A preliminary analysis of the resolution capabilities of the dataset, based on the Derivative Weight Sum (DWS) distribution, shows that the velocity structure is better resolved in the West part of the region between the surface to15 km. The resulting tomographic image has a prominent low-velocity anomaly that shows a maximum decrease in P-wave velocity in the first 12 kms in the studied region. We also identified the occurrence of local seismic events of reduced magnitude not catalogued, in the neighbourhood of Almodôvar (low Alentejo). The spatial distribution of epicentres defines a NE-SW direction that coincides with the strike of the mapped geological faults of the region and issued from photo-interpretation. Is still expectable to refine the seismicity of the region of Almodôvar and establish more rigorously its role in the seismotectonic picture of the region. This work is expected to produce a more detailed knowledge of the structure of the crust over the region of Algarve, being able to identify seismogenic zones, potentially generators of significant seismic events and also the identification of zones of active faults
Velocity Structure of Jets in Coronal Hole
Velocity structures of jets in a coronal hole have been derived for the first
time. Hinode observations revealed the existence of many bright points in
coronal holes. They are loop-shaped and sometimes associated with coronal jets.
Spectra obtained with the Extreme ultraviolet Imaging Spectrometer (EIS) on
board Hinode are analyzed to infer Doppler velocity of bright loops and jets in
a coronal hole of the north polar region. Elongated jets above bright loops are
found to be blue-shifted by 30 km/s at maximum, while foot points of bright
loops are red-shifted. Blue-shifts detected in coronal jets are interpreted as
upflows produced by magnetic reconnection between emerging flux and the ambient
field in the coronal hole.Comment: 11 pages, 7 figures, accepted for publication in PASJ Hinode special
issu
Tomographic three-dimensional seismic velocity structure of the SW Ibero-Maghrebian region
The present tomographic study focuses on SW Ibero-Maghrebian region. To locate the seismic events and find the local velocity structure of epicentral area, the P and S arrivals at 42 stations located at north of Morocco, south of Portugal and Spain are used. The arrival times data used, in this study, were obtained by the “Instituto de Meteorologia” (IM, Lisbon, Portugal), the National Institute of Geophysics (CNRST, Rabat, Morocco) and the “Instituto Geografico Nacional” (IGN, Madrid, Spain) (between 12/1988 and 30/2008). The preliminary estimate of origin times and hypocentral coordinates are determined by the hypocenter 3.2 program. In this study we use a linearized inversion procedure comprising two steps: 1) finding the minimal 1-D model and simultaneous reloca- tion of hypocenters and 2) determination of local velocity structure assuming a continuous velocity field. The earth structure is represented in three dimensions by velocity at discrete points, and velocity at any intervening point is determined by linear interpolation among the surrounding eight grid points. The resolutions tests results indicate that the calculated images give near true structure for the studied region at 15, 30, 45 and 60 km depth. At 5km depth it gives near true structure in the continental region of Portugal, Spain, and Morocco. This study shows that the total crustal thickness varies from 30 to 35 km and contains low-velocity anomalies. A prominent low velocity anomaly that shows a maximum decrease in P-wave velocity of approximately 6 per cent in the Gibraltar region is observed extending down to a depth of approximately 30 km. This low velocity demarcates a small bloc located between Iberia and Nubia plates. The resulting tomographic image has a prominent high velocity anomaly that shows a maximum increase in P-wave velocity of approximately 6 per cent between 45 to 60 km depth beneath South of Portugal and the Golf of Cadiz. High-velocity anomalies could be associated with the location of deep active faults in the uplift and upper crust of South of Portugal. In the Golf of Cadiz, these anomalies could be associated with the seismogenic zone and probably more at the south with the Iberia-Nubia plate boundary
Velocity Structure of Self-Similar Spherically Collapsed Halos
Using a generalized self-similar secondary infall model, which accounts for
tidal torques acting on the halo, we analyze the velocity profiles of halos in
order to gain intuition for N-body simulation results. We analytically
calculate the asymptotic behavior of the internal radial and tangential kinetic
energy profiles in different radial regimes. We then numerically compute the
velocity anisotropy and pseudo-phase-space density profiles and compare them to
recent N-body simulations. For cosmological initial conditions, we find both
numerically and analytically that the anisotropy profile asymptotes at small
radii to a constant set by model parameters. It rises on intermediate scales as
the velocity dispersion becomes more radially dominated and then drops off at
radii larger than the virial radius where the radial velocity dispersion
vanishes in our model. The pseudo-phase-space density is universal on
intermediate and large scales. However, its asymptotic slope on small scales
depends on the halo mass and on how mass shells are torqued after turnaround.
The results largely confirm N-body simulations but show some differences that
are likely due to our assumption of a one-dimensional phase space manifold.Comment: 11 pages, 4 figures. Accepted by PR
- …
