9,572 research outputs found

    Bacterial porin disrupts mitochondrial membrane potential and sensitizes host cells to apoptosis

    Get PDF
    The bacterial PorB porin, an ATP-binding beta-barrel protein of pathogenic Neisseria gonorrhoeae, triggers host cell apoptosis by an unknown mechanism. PorB is targeted to and imported by host cell mitochondria, causing the breakdown of the mitochondrial membrane potential (delta psi m). Here, we show that PorB induces the condensation of the mitochondrial matrix and the loss of cristae structures, sensitizing cells to the induction of apoptosis via signaling pathways activated by BH3-only proteins. PorB is imported into mitochondria through the general translocase TOM but, unexpectedly, is not recognized by the SAM sorting machinery, usually required for the assembly of beta-barrel proteins in the mitochondrial outer membrane. PorB integrates into the mitochondrial inner membrane, leading to the breakdown of delta psi m. The PorB channel is regulated by nucleotides and an isogenic PorB mutant defective in ATP-binding failed to induce delta psi m loss and apoptosis, demonstrating that dissipation of delta psi m is a requirement for cell death caused by neisserial infection

    Photoaffinity labeling with cholesterol analogues precisely maps a cholesterol-binding site in voltage-dependent anion channel-1

    Get PDF
    Voltage-dependent anion channel-1 (VDAC1) is a highly regulated β-barrel membrane protein that mediates transport of ions and metabolites between the mitochondria and cytosol of the cell. VDAC1 co-purifies with cholesterol and is functionally regulated by cholesterol, among other endogenous lipids. Molecular modeling studies based on NMR observations have suggested five cholesterol-binding sites in VDAC1, but direct experimental evidence for these sites is lacking. Here, to determine the sites of cholesterol binding, we photolabeled purified mouse VDAC1 (mVDAC1) with photoactivatable cholesterol analogues and analyzed the photolabeled sites with both top-down mass spectrometry (MS), and bottom-up MS paired with a clickable, stable isotope-labeled tag, FLI-tag. Using cholesterol analogues with a diazirine in either the 7 position of the steroid ring (LKM38) or the aliphatic tail (KK174), we mapped a binding pocket in mVDAC1 localized to Thr83 and Glu73, respectively. When Glu73 was mutated to a glutamine, KK174 no longer photolabeled this residue, but instead labeled the nearby Tyr62 within this same binding pocket. The combination of analytical strategies employed in this work permits detailed molecular mapping of a cholesterol-binding site in a protein, including an orientation of the sterol within the site. Our work raises the interesting possibility that cholesterol-mediated regulation of VDAC1 may be facilitated through a specific binding site at the functionally important Glu73 residue

    Membrane proteins in the outer mebrane of plastids and mitochondria

    Get PDF
    Channels of the plastid and mitochondrial outer membranes facilitate the turnover of molecules and ions via these membranes. Although channels have been studied many questions pertaining to the whole diversity of plastid and mitochondrial channels in Arabidopsis thaliana and Pisum sativum remain unanswered. In this thesis I studied OEP16, OEP37 and VDAC families in two model plants, in Arabidopsis and pea. The Arabidopsis OEP16 family represents four channels of α-helical structure, similar to the pea OEP16 protein. These channels are suggested to transport amino acids and compounds with primary amino groups. Immunoblot analysis, GFP/RFP protein fusion expression, as well as proteomic analysis showed that AtOEP16.1, AtOEP16.2 and AtOEP16.4 are located in the outer envelope membrane of plastids, while AtOEP16.3 is in mitochondria. The gene expression and immunoblot analyses revealed that AtOEP16.1 and AtOEP16.3 proteins are highly abundant and ubiquitous; expression of AtOEP16.1 is regulated by light and cold. AtOEP16.2 is highly expressed in pollen, seeds and seedlings. AtOEP16.4 is a low expressed housekeeping protein. Single knockout mutants of AtOEP16.1, AtOEP16.2 and AtOEP16.4, and double mutants of AtOEP16 gene family did not show any remarkable phenotype. However, macroarray analysis of Atoep16.1-p T-DNA mutant revealed 10 down-regulated and 6 up-regulated genes. In contrast to the α-helical OEP16 proteins, the OEP37 and VDAC proteins are of β-barrel structure. The PsOEP37 and AtOEP37 channel proteins form a selective barrier in the outer envelope of chloroplasts. Electrophysiological studies in lipid bilayer membranes showed that the PsOEP37 channel is permeable for cations. Specific expression profiles showed that AtOEP37 and PsOEP37 are highly expressed in the entire plant. The isolated PsVDAC gene encodes a protein, which is located in mitochondria. In Arabidopsis gene database, five Arabidopsis genes, which code for VDAC-like proteins were announced. One gene was not detected, whereas four of these genes expressed in leaves, roots, flower buds and pollen

    Flexibility of the N-Terminal mVDAC1 Segment Controls the Channel’s Gating Behavior

    Get PDF
    Since the solution of the molecular structures of members of the voltage dependent anion channels (VDACs), the N-terminal α-helix has been the main focus of attention, since its strategic location, in combination with its putative conformational flexibility, could define or control the channel’s gating characteristics. Through engineering of two double-cysteine mVDAC1 variants we achieved fixing of the N-terminal segment at the bottom and midpoint of the pore. Whilst cross-linking at the midpoint resulted in the channel remaining constitutively open, cross-linking at the base resulted in an “asymmetric” gating behavior, with closure only at one electric field´s orientation depending on the channel’s orientation in the lipid bilayer. Additionally, and while the native channel adopts several well-defined closed states (S1 and S2), the cross-linked variants showed upon closure a clear preference for the S2 state. With native-channel characteristics restored following reduction of the cysteines, it is evident that the conformational flexibility of the N-terminal segment plays indeed a major part in the control of the channel’s gating behavior

    TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control

    Get PDF
    The 18-kDa TSPO (translocator protein) localizes on the outer mitochondrial membrane (OMM) and participates in cholesterol transport. Here, we report that TSPO inhibits mitochondrial autophagy downstream of the PINK1-PARK2 pathway, preventing essential ubiquitination of proteins. TSPO abolishes mitochondrial relocation of SQSTM1/p62 (sequestosome 1), and consequently that of the autophagic marker LC3 (microtubule-associated protein 1 light chain 3), thus leading to an accumulation of dysfunctional mitochondria, altering the appearance of the network. Independent of cholesterol regulation, the modulation of mitophagy by TSPO is instead dependent on VDAC1 (voltage-dependent anion channel 1), to which TSPO binds, reducing mitochondrial coupling and promoting an overproduction of reactive oxygen species (ROS) that counteracts PARK2-mediated ubiquitination of proteins. These data identify TSPO as a novel element in the regulation of mitochondrial quality control by autophagy, and demonstrate the importance for cell homeostasis of its expression ratio with VDAC1

    Gain Stabilization of a Submillimeter SIS Heterodyne Receiver

    Full text link
    We have designed a system to stabilize the gain of a submillimeter heterodyne receiver against thermal fluctuations of the mixing element. In the most sensitive heterodyne receivers, the mixer is usually cooled to 4 K using a closed-cycle cryocooler, which can introduce ~1% fluctuations in the physical temperature of the receiver components. We compensate for the resulting mixer conversion gain fluctuations by monitoring the physical temperature of the mixer and adjusting the gain of the intermediate frequency (IF) amplifier that immediately follows the mixer. This IF power stabilization scheme, developed for use at the Submillimeter Array (SMA), a submillimeter interferometer telescope on Mauna Kea in Hawaii, routinely achieves a receiver gain stability of 1 part in 6,000 (rms to mean). This is an order of magnitude improvement over the typical uncorrected stability of 1 part in a few hundred. Our gain stabilization scheme is a useful addition to SIS heterodyne receivers that are cooled using closed-cycle cryocoolers in which the 4 K temperature fluctuations tend to be the leading cause of IF power fluctuations.Comment: 7 pages, 6 figures accepted to IEEE Transactions on Microwave Theory and Technique

    Mitochondrial Outer Membrane Permeability Change and Hypersensitivity to Digitonin Early in Staurosporine-induced Apoptosis

    Get PDF
    We have shown here that the apoptosis inducer staurosporine causes an early decrease in the endogenous respiration rate in intact 143B.TK- cells. On the other hand, the activity of cytochrome c oxidase is unchanged for the first 8 h after staurosporine treatment, as determined by oxygen consumption measurements in intact cells. The decrease in the endogenous respiration rate precedes the release of cytochrome c from mitochondria. Moreover, we have ruled out caspases, permeability transition, and protein kinase C inhibition as being responsible for the decrease in respiration rate. Furthermore, overexpression of the gene for Bcl-2 does not prevent the decrease in respiration rate. The last finding suggests that Bcl-2 acts downstream of the perturbation in respiration. The evidence of normal enzymatic activities of complex I and complex III in staurosporine-treated 143B.TK- osteosarcoma cells indicates that the cause of the respiration decrease is probably an alteration in the permeability of the outer mitochondrial membrane. Presumably, the voltage-dependent anion channel closes, thereby preventing ADP and oxidizable substrates from being taken up into mitochondria. This interpretation was confirmed by another surprising finding, namely that, in staurosporine-treated 143B.TK- cells permeabilized with digitonin at a concentration not affecting the mitochondrial membranes in naive cells, the outer mitochondrial membrane loses its integrity; this leads to a reversal of its impermeability to exogenous substrates. The loss of outer membrane integrity leads also to a massive premature release of cytochrome c from mitochondria. Most significantly, Bcl-2 overexpression prevents the staurosporine-induced hypersensitivity of the outer membrane to digitonin. Our experiments have thus revealed early changes in the outer mitochondrial membrane, which take place long before cytochrome c is released from mitochondria in intact cells

    TSPO: kaleidoscopic 18-kDa amid biochemical pharmacology, control and targeting of mitochondria

    Get PDF
    The 18-kDa translocator protein (TSPO) localizes in the outer mitochondrial membrane (OMM) of cells and is readily up-regulated under various pathological conditions such as cancer, inflammation, mechanical lesions and neurological diseases. Able to bind with high affinity synthetic and endogenous ligands, its core biochemical function resides in the translocation of cholesterol into the mitochondria influencing the subsequent steps of (neuro-)steroid synthesis and systemic endocrine regulation. Over the years, however, TSPO has also been linked to core cellular processes such as apoptosis and autophagy. It interacts and forms complexes with other mitochondrial proteins such as the voltage-dependent anion channel (VDAC) via which signalling and regulatory transduction of these core cellular events may be influenced. Despite nearly 40 years of study, the precise functional role of TSPO beyond cholesterol trafficking remains elusive even though the recent breakthroughs on its high-resolution crystal structure and contribution to quality-control signalling of mitochondria. All this along with a captivating pharmacological profile provides novel opportunities to investigate and understand the significance of this highly conserved protein as well as contribute the development of specific therapeutics as presented and discussed in the present review
    corecore