9,041 research outputs found

    Label-Efficient Deep Learning in Medical Image Analysis: Challenges and Future Directions

    Full text link
    Deep learning has seen rapid growth in recent years and achieved state-of-the-art performance in a wide range of applications. However, training models typically requires expensive and time-consuming collection of large quantities of labeled data. This is particularly true within the scope of medical imaging analysis (MIA), where data are limited and labels are expensive to be acquired. Thus, label-efficient deep learning methods are developed to make comprehensive use of the labeled data as well as the abundance of unlabeled and weak-labeled data. In this survey, we extensively investigated over 300 recent papers to provide a comprehensive overview of recent progress on label-efficient learning strategies in MIA. We first present the background of label-efficient learning and categorize the approaches into different schemes. Next, we examine the current state-of-the-art methods in detail through each scheme. Specifically, we provide an in-depth investigation, covering not only canonical semi-supervised, self-supervised, and multi-instance learning schemes, but also recently emerged active and annotation-efficient learning strategies. Moreover, as a comprehensive contribution to the field, this survey not only elucidates the commonalities and unique features of the surveyed methods but also presents a detailed analysis of the current challenges in the field and suggests potential avenues for future research.Comment: Update Few-shot Method

    SS-CPGAN: Self-Supervised Cut-and-Pasting Generative Adversarial Network for Object Segmentation

    Full text link
    This paper proposes a novel self-supervised based Cut-and-Paste GAN to perform foreground object segmentation and generate realistic composite images without manual annotations. We accomplish this goal by a simple yet effective self-supervised approach coupled with the U-Net based discriminator. The proposed method extends the ability of the standard discriminators to learn not only the global data representations via classification (real/fake) but also learn semantic and structural information through pseudo labels created using the self-supervised task. The proposed method empowers the generator to create meaningful masks by forcing it to learn informative per-pixel as well as global image feedback from the discriminator. Our experiments demonstrate that our proposed method significantly outperforms the state-of-the-art methods on the standard benchmark datasets

    Towards generalizable machine learning models for computer-aided diagnosis in medicine

    Get PDF
    Hidden stratification represents a phenomenon in which a training dataset contains unlabeled (hidden) subsets of cases that may affect machine learning model performance. Machine learning models that ignore the hidden stratification phenomenon--despite promising overall performance measured as accuracy and sensitivity--often fail at predicting the low prevalence cases, but those cases remain important. In the medical domain, patients with diseases are often less common than healthy patients, and a misdiagnosis of a patient with a disease can have significant clinical impacts. Therefore, to build a robust and trustworthy CAD system and a reliable treatment effect prediction model, we cannot only pursue machine learning models with high overall accuracy, but we also need to discover any hidden stratification in the data and evaluate the proposing machine learning models with respect to both overall performance and the performance on certain subsets (groups) of the data, such as the ‘worst group’. In this study, I investigated three approaches for data stratification: a novel algorithmic deep learning (DL) approach that learns similarities among cases and two schema completion approaches that utilize domain expert knowledge. I further proposed an innovative way to integrate the discovered latent groups into the loss functions of DL models to allow for better model generalizability under the domain shift scenario caused by the data heterogeneity. My results on lung nodule Computed Tomography (CT) images and breast cancer histopathology images demonstrate that learning homogeneous groups within heterogeneous data significantly improves the performance of the computer-aided diagnosis (CAD) system, particularly for low-prevalence or worst-performing cases. This study emphasizes the importance of discovering and learning the latent stratification within the data, as it is a critical step towards building ML models that are generalizable and reliable. Ultimately, this discovery can have a profound impact on clinical decision-making, particularly for low-prevalence cases

    Data efficient deep learning for medical image analysis: A survey

    Full text link
    The rapid evolution of deep learning has significantly advanced the field of medical image analysis. However, despite these achievements, the further enhancement of deep learning models for medical image analysis faces a significant challenge due to the scarcity of large, well-annotated datasets. To address this issue, recent years have witnessed a growing emphasis on the development of data-efficient deep learning methods. This paper conducts a thorough review of data-efficient deep learning methods for medical image analysis. To this end, we categorize these methods based on the level of supervision they rely on, encompassing categories such as no supervision, inexact supervision, incomplete supervision, inaccurate supervision, and only limited supervision. We further divide these categories into finer subcategories. For example, we categorize inexact supervision into multiple instance learning and learning with weak annotations. Similarly, we categorize incomplete supervision into semi-supervised learning, active learning, and domain-adaptive learning and so on. Furthermore, we systematically summarize commonly used datasets for data efficient deep learning in medical image analysis and investigate future research directions to conclude this survey.Comment: Under Revie
    • …
    corecore