3,621 research outputs found

    Resource Allocation for Device-to-Device Communications Underlaying Heterogeneous Cellular Networks Using Coalitional Games

    Full text link
    Heterogeneous cellular networks (HCNs) with millimeter wave (mmWave) communications included are emerging as a promising candidate for the fifth generation mobile network. With highly directional antenna arrays, mmWave links are able to provide several-Gbps transmission rate. However, mmWave links are easily blocked without line of sight. On the other hand, D2D communications have been proposed to support many content based applications, and need to share resources with users in HCNs to improve spectral reuse and enhance system capacity. Consequently, an efficient resource allocation scheme for D2D pairs among both mmWave and the cellular carrier band is needed. In this paper, we first formulate the problem of the resource allocation among mmWave and the cellular band for multiple D2D pairs from the view point of game theory. Then, with the characteristics of cellular and mmWave communications considered, we propose a coalition formation game to maximize the system sum rate in statistical average sense. We also theoretically prove that our proposed game converges to a Nash-stable equilibrium and further reaches the near-optimal solution with fast convergence rate. Through extensive simulations under various system parameters, we demonstrate the superior performance of our scheme in terms of the system sum rate compared with several other practical schemes.Comment: 13 pages, 12 figure

    Joint Optimization of Resource Allocation and User Association in Multi-Frequency Cellular Networks Assisted by RIS

    Full text link
    Due to the development of communication technology and the rise of user network demand, a reasonable resource allocation for wireless networks is the key to guaranteeing regular operation and improving system performance. Various frequency bands exist in the natural network environment, and heterogeneous cellular network (HCN) has become a hot topic for current research. Meanwhile, Reconfigurable Intelligent Surface (RIS) has become a key technology for developing next-generation wireless networks. By modifying the phase of the incident signal arriving at the RIS surface, RIS can improve the signal quality at the receiver and reduce co-channel interference. In this paper, we develop a RIS-assisted HCN model for a multi-base station (BS) multi-frequency network, which includes 4G, 5G, millimeter wave (mmwave), and terahertz networks, and considers the case of multiple network coverage users, which is more in line with the realistic network characteristics and the concept of 6G networks. We propose the optimization objective of maximizing the system sum rate, which is decomposed into two subproblems, i.e., the user resource allocation and the phase shift optimization problem of RIS components. Due to the NP-hard and coupling relationship, we use the block coordinate descent (BCD) method to alternately optimize the local solutions of the coalition game and the local discrete phase search algorithm to obtain the global solution. In contrast, most previous studies have used the coalition game algorithm to solve the resource allocation problem alone. Simulation results show that the algorithm performs better than the rest of the algorithms, effectively improves the system sum rate, and achieves performance close to the optimal solution of the traversal algorithm with low complexity.Comment: 18 page

    QoS-aware User Association and Transmission Scheduling for Millimeter-Wave Train-ground Communications

    Full text link
    With the development of wireless communication, people have put forward higher requirements for train-ground communications in the high-speed railway (HSR) scenarios. With the help of mobile relays (MRs) installed on the roof of the train, the application of Millimeter-Wave (mm-wave) communication which has rich spectrum resources to the train-ground communication system can realize high data rate, so as to meet users' increasing demand for broad-band multimedia access. Also, full-duplex (FD) technology can theoretically double the spectral efficiency. In this paper, we formulate the user association and transmission scheduling problem in the mm-wave train-ground communication system with MR operating in the FD mode as a nonlinear programming problem. In order to maximize the system throughput and the number of users meeting quality of service (QoS) requirements, we propose an algorithm based on coalition game to solve the challenging NP-hard problem, and also prove the convergence and Nash-stable structure of the proposed algorithm. Extensive simulation results demonstrate that the proposed coalition game based algorithm can effectively improve the system throughput and meet the QoS requirements of as many users as possible, so that the communication system has a certain QoS awareness.Comment: 14 page

    Resource Allocation for Device-to-Device Communications in Multi-Cell Multi-Band Heterogeneous Cellular Networks

    Full text link
    Heterogeneous cellular networks (HCNs) with millimeter wave (mm-wave) communications are considered as a promising technology for the fifth generation mobile networks. Mm-wave has the potential to provide multiple gigabit data rate due to the broad spectrum. Unfortunately, additional free space path loss is also caused by the high carrier frequency. On the other hand, mm-wave signals are sensitive to obstacles and more vulnerable to blocking effects. To address this issue, highly directional narrow beams are utilized in mm-wave networks. Additionally, device-to-device (D2D) users make full use of their proximity and share uplink spectrum resources in HCNs to increase the spectrum efficiency and network capacity. Towards the caused complex interferences, the combination of D2D-enabled HCNs with small cells densely deployed and mm-wave communications poses a big challenge to the resource allocation problems. In this paper, we formulate the optimization problem of D2D communication spectrum resource allocation among multiple micro-wave bands and multiple mm-wave bands in HCNs. Then, considering the totally different propagation conditions on the two bands, a heuristic algorithm is proposed to maximize the system transmission rate and approximate the solutions with sufficient accuracies. Compared with other practical schemes, we carry out extensive simulations with different system parameters, and demonstrate the superior performance of the proposed scheme. In addition, the optimality and complexity are simulated to further verify effectiveness and efficiency.Comment: 13 pages, 11 figures, IEEE Transactions on Vehicular Technolog
    • …
    corecore