3,050 research outputs found

    Hybrid Caching for Chip Multiprocessors Using Compiler-Based Data Classification

    Get PDF
    The high performance delivered by modern computer system keeps scaling with an increasingnumber of processors connected using distributed network on-chip. As a result, memory accesslatency, largely dominated by remote data cache access and inter-processor communication, is becoming a critical performance bottleneck. To release this problem, it is necessary to localize data access as much as possible while keep efficient on-chip cache memory utilization. Achieving this however, is application dependent and needs a keen insight into the memory access characteristics of the applications. This thesis demonstrates how using fairly simple thus inexpensive compiler analysis memory accesses can be classified into private data access and shared data access. In addition, we introduce a third classification named probably private access and demonstrate the impact of this category compared to traditional private and shared memory classification. The memory access classification information from the compiler analysis is then provided to the runtime system through a modified memory allocator and page table to facilitate a hybrid private-shared caching technique. The hybrid cache mechanism is aware of different data access classification and adopts appropriate placement and search policies accordingly to improve performance. Our analysis demonstrates that many applications have a significant amount of both private and shared data and that compiler analysis can identify the private data effectively for many applications. Experimentsresults show that the implemented hybrid caching scheme achieves 4.03% performance improvement over state of the art NUCA-base caching

    Accelerating sequential programs using FastFlow and self-offloading

    Full text link
    FastFlow is a programming environment specifically targeting cache-coherent shared-memory multi-cores. FastFlow is implemented as a stack of C++ template libraries built on top of lock-free (fence-free) synchronization mechanisms. In this paper we present a further evolution of FastFlow enabling programmers to offload part of their workload on a dynamically created software accelerator running on unused CPUs. The offloaded function can be easily derived from pre-existing sequential code. We emphasize in particular the effective trade-off between human productivity and execution efficiency of the approach.Comment: 17 pages + cove

    Lock-Based cache coherence protocol for chip multiprocessors

    Get PDF
    Chip multiprocessor (CMP) is replacing the superscalar processor due to its huge performance gains in terms of processor speed, scalability, power consumption and economical design. Since the CMP consists of multiple processor cores on a single chip usually with share cache resources, process synchronization is an important issue that needs to be dealt with. Synchronization is usually done by the operating system in case of shared memory multiprocessors (SMP). This work studies the effect of performing synchronization by the hardware through its integration with the cache coherence protocol. A novel cache coherence protocol, called Lock-based Cache Coherence Protocol (LCCP) was designed and its performance was compared with MESI cache coherence protocol. Experiments were performed by a functional multiprocessor simulator, MP_Simplesim, that was modified to do this work. A novel interconnection network was also designed and tested in terms of performance against the traditional bus approach by means of simulation
    corecore