3 research outputs found

    A Lagrangian discretization multiagent approach for large-scale multimodal dynamic assignment

    Get PDF
    This paper develops a Lagrangian discretization multiagent model for large-scale multimodal simulation and assignment. For road traffic flow modeling, we describe the dynamics of vehicle packets based on a macroscopic model on the basis of a Lagrangian discretization. The metro/tram/train systems are modeled on constant speed on scheduled timetable/frequency over lines of operations. Congestion is modeled as waiting time at stations plus induced discomfort when the capacity of vehicle is achieved. For the bus system, it is modeled similar to cars with different speed settings, either competing for road capacity resources with other vehicles or moving on separated bus lines on the road network. For solving the large-scale multimodal dynamic traffic assignment problem, an effective-path-based cross entropy is proposed to approximate the dynamic user equilibrium. Some numerical simulations have been conducted to demonstrate its ability to describe traffic dynamics on road network.multimodal transportation systems; Lagrangian discretization; traffic assignment; multiagent systems

    A Lagrangian discretization multiagent approach for large-scale multimodal dynamic assignment

    Get PDF
    This paper develops a Lagrangian discretization multiagent model for large-scale multimodal simulation and assignment. For road traffic flow modeling, we describe the dynamics of vehicle packets based on a macroscopic model on the basis of a Lagrangian discretization. The metro/tram/train systems are modeled on constant speed on scheduled timetable/frequency over lines of operations. Congestion is modeled as waiting time at stations plus induced discomfort when the capacity of vehicle is achieved. For the bus system, it is modeled similar to cars with different speed settings, either competing for road capacity resources with other vehicles or moving on separated bus lines on the road network. For solving the large-scale multimodal dynamic traffic assignment problem, an effective-path-based cross entropy is proposed to approximate the dynamic user equilibrium. Some numerical simulations have been conducted to demonstrate its ability to describe traffic dynamics on road network

    A Comparative Study of the Cross Entropy Approach with the State–of-the-art Simulation-based Traffic Assignment Algorithms

    Get PDF
    AbstractThis paper presents a path-based cross entropy algorithm for solving simulation-based dynamic traffic assignment problem. The performance of the cross entropy algorithm is compared with two state-of-the-art algorithms: method of successive averages and gap function based projection algorithm. The dynamic network loading model is based on a mesoscopic queue model complying with generic first order macroscopic node model. The computational study implemented on four realistic networks shows the cross entropy method provides satisfactory convergence accuracy to user equilibrium
    corecore