10,426 research outputs found

    Early Identification of Violent Criminal Gang Members

    Full text link
    Gang violence is a major problem in the United States accounting for a large fraction of homicides and other violent crime. In this paper, we study the problem of early identification of violent gang members. Our approach relies on modified centrality measures that take into account additional data of the individuals in the social network of co-arrestees which together with other arrest metadata provide a rich set of features for a classification algorithm. We show our approach obtains high precision and recall (0.89 and 0.78 respectively) in the case where the entire network is known and out-performs current approaches used by law-enforcement to the problem in the case where the network is discovered overtime by virtue of new arrests - mimicking real-world law-enforcement operations. Operational issues are also discussed as we are preparing to leverage this method in an operational environment.Comment: SIGKDD 201

    Solutions to Detect and Analyze Online Radicalization : A Survey

    Full text link
    Online Radicalization (also called Cyber-Terrorism or Extremism or Cyber-Racism or Cyber- Hate) is widespread and has become a major and growing concern to the society, governments and law enforcement agencies around the world. Research shows that various platforms on the Internet (low barrier to publish content, allows anonymity, provides exposure to millions of users and a potential of a very quick and widespread diffusion of message) such as YouTube (a popular video sharing website), Twitter (an online micro-blogging service), Facebook (a popular social networking website), online discussion forums and blogosphere are being misused for malicious intent. Such platforms are being used to form hate groups, racist communities, spread extremist agenda, incite anger or violence, promote radicalization, recruit members and create virtual organi- zations and communities. Automatic detection of online radicalization is a technically challenging problem because of the vast amount of the data, unstructured and noisy user-generated content, dynamically changing content and adversary behavior. There are several solutions proposed in the literature aiming to combat and counter cyber-hate and cyber-extremism. In this survey, we review solutions to detect and analyze online radicalization. We review 40 papers published at 12 venues from June 2003 to November 2011. We present a novel classification scheme to classify these papers. We analyze these techniques, perform trend analysis, discuss limitations of existing techniques and find out research gaps

    The web of federal crimes in Brazil: topology, weaknesses, and control

    Full text link
    Law enforcement and intelligence agencies worldwide struggle to find effective ways to fight and control organized crime. However, illegal networks operate outside the law and much of the data collected is classified. Therefore, little is known about criminal networks structure, topological weaknesses, and control. In this contribution we present a unique criminal network of federal crimes in Brazil. We study its structure, its response to different attack strategies, and its controllability. Surprisingly, the network composed of multiple crimes of federal jurisdiction has a giant component, enclosing more than a half of all its edges. This component shows some typical social network characteristics, such as small-worldness and high clustering coefficient, however it is much "darker" than common social networks, having low levels of edge density and network efficiency. On the other side, it has a very high modularity value, Q=0.96Q=0.96. Comparing multiple attack strategies, we show that it is possible to disrupt the giant component of the network by removing only 2%2\% of its edges or nodes, according to a module-based prescription, precisely due to its high modularity. Finally, we show that the component is controllable, in the sense of the exact network control theory, by getting access to 20%20\% of the driver nodes.Comment: 9 pages, 5 figure

    Mining complex trees for hidden fruit : a graph–based computational solution to detect latent criminal networks : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Information Technology at Massey University, Albany, New Zealand.

    Get PDF
    The detection of crime is a complex and difficult endeavour. Public and private organisations – focusing on law enforcement, intelligence, and compliance – commonly apply the rational isolated actor approach premised on observability and materiality. This is manifested largely as conducting entity-level risk management sourcing ‘leads’ from reactive covert human intelligence sources and/or proactive sources by applying simple rules-based models. Focusing on discrete observable and material actors simply ignores that criminal activity exists within a complex system deriving its fundamental structural fabric from the complex interactions between actors - with those most unobservable likely to be both criminally proficient and influential. The graph-based computational solution developed to detect latent criminal networks is a response to the inadequacy of the rational isolated actor approach that ignores the connectedness and complexity of criminality. The core computational solution, written in the R language, consists of novel entity resolution, link discovery, and knowledge discovery technology. Entity resolution enables the fusion of multiple datasets with high accuracy (mean F-measure of 0.986 versus competitors 0.872), generating a graph-based expressive view of the problem. Link discovery is comprised of link prediction and link inference, enabling the high-performance detection (accuracy of ~0.8 versus relevant published models ~0.45) of unobserved relationships such as identity fraud. Knowledge discovery uses the fused graph generated and applies the “GraphExtract” algorithm to create a set of subgraphs representing latent functional criminal groups, and a mesoscopic graph representing how this set of criminal groups are interconnected. Latent knowledge is generated from a range of metrics including the “Super-broker” metric and attitude prediction. The computational solution has been evaluated on a range of datasets that mimic an applied setting, demonstrating a scalable (tested on ~18 million node graphs) and performant (~33 hours runtime on a non-distributed platform) solution that successfully detects relevant latent functional criminal groups in around 90% of cases sampled and enables the contextual understanding of the broader criminal system through the mesoscopic graph and associated metadata. The augmented data assets generated provide a multi-perspective systems view of criminal activity that enable advanced informed decision making across the microscopic mesoscopic macroscopic spectrum
    corecore