1,583 research outputs found

    Augmenting Latent Dirichlet Allocation and Rank Threshold Detection with Ontologies

    Get PDF
    In an ever-increasing data rich environment, actionable information must be extracted, filtered, and correlated from massive amounts of disparate often free text sources. The usefulness of the retrieved information depends on how we accomplish these steps and present the most relevant information to the analyst. One method for extracting information from free text is Latent Dirichlet Allocation (LDA), a document categorization technique to classify documents into cohesive topics. Although LDA accounts for some implicit relationships such as synonymy (same meaning) it often ignores other semantic relationships such as polysemy (different meanings), hyponym (subordinate), meronym (part of), and troponomys (manner). To compensate for this deficiency, we incorporate explicit word ontologies, such as WordNet, into the LDA algorithm to account for various semantic relationships. Experiments over the 20 Newsgroups, NIPS, OHSUMED, and IED document collections demonstrate that incorporating such knowledge improves perplexity measure over LDA alone for given parameters. In addition, the same ontology augmentation improves recall and precision results for user queries

    Improving self-organising information maps as navigational tools: A semantic approach

    Get PDF
    Purpose - The goal of the research is to explore whether the use of higher-level semantic features can help us to build better self-organising map (SOM) representation as measured from a human-centred perspective. The authors also explore an automatic evaluation method that utilises human expert knowledge encapsulated in the structure of traditional textbooks to determine map representation quality. Design/methodology/approach - Two types of document representations involving semantic features have been explored - i.e. using only one individual semantic feature, and mixing a semantic feature with keywords. Experiments were conducted to investigate the impact of semantic representation quality on the map. The experiments were performed on data collections from a single book corpus and a multiple book corpus. Findings - Combining keywords with certain semantic features achieves significant improvement of representation quality over the keywords-only approach in a relatively homogeneous single book corpus. Changing the ratios in combining different features also affects the performance. While semantic mixtures can work well in a single book corpus, they lose their advantages over keywords in the multiple book corpus. This raises a concern about whether the semantic representations in the multiple book corpus are homogeneous and coherent enough for applying semantic features. The terminology issue among textbooks affects the ability of the SOM to generate a high quality map for heterogeneous collections. Originality/value - The authors explored the use of higher-level document representation features for the development of better quality SOM. In addition the authors have piloted a specific method for evaluating the SOM quality based on the organisation of information content in the map. © 2011 Emerald Group Publishing Limited

    Towards a Universal Wordnet by Learning from Combined Evidenc

    Get PDF
    Lexical databases are invaluable sources of knowledge about words and their meanings, with numerous applications in areas like NLP, IR, and AI. We propose a methodology for the automatic construction of a large-scale multilingual lexical database where words of many languages are hierarchically organized in terms of their meanings and their semantic relations to other words. This resource is bootstrapped from WordNet, a well-known English-language resource. Our approach extends WordNet with around 1.5 million meaning links for 800,000 words in over 200 languages, drawing on evidence extracted from a variety of resources including existing (monolingual) wordnets, (mostly bilingual) translation dictionaries, and parallel corpora. Graph-based scoring functions and statistical learning techniques are used to iteratively integrate this information and build an output graph. Experiments show that this wordnet has a high level of precision and coverage, and that it can be useful in applied tasks such as cross-lingual text classification

    Review of Semantic Importance and Role of using Ontologies in Web Information Retrieval Techniques

    Get PDF
    The Web contains an enormous amount of information, which is managed to accumulate, researched, and regularly used by many users. The nature of the Web is multilingual and growing very fast with its diverse nature of data including unstructured or semi-structured data such as Websites, texts, journals, and files. Obtaining critical relevant data from such vast data with its diverse nature has been a monotonous and challenging task. Simple key phrase data gathering systems rely heavily on statistics, resulting in a word incompatibility problem related to a specific word's inescapable semantic and situation variants. As a result, there is an urgent need to arrange such colossal data systematically to find out the relevant information that can be quickly analyzed and fulfill the users' needs in the relevant context. Over the years ontologies are widely used in the semantic Web to contain unorganized information systematic and structured manner. Still, they have also significantly enhanced the efficiency of various information recovery approaches. Ontological information gathering systems recover files focused on the semantic relation of the search request and the searchable information. This paper examines contemporary ontology-based information extraction techniques for texts, interactive media, and multilingual data types. Moreover, the study tried to compare and classify the most significant developments utilized in the search and retrieval techniques and their major disadvantages and benefits

    Text mining with the WEBSOM

    Get PDF
    The emerging field of text mining applies methods from data mining and exploratory data analysis to analyzing text collections and to conveying information to the user in an intuitive manner. Visual, map-like displays provide a powerful and fast medium for portraying information about large collections of text. Relationships between text items and collections, such as similarity, clusters, gaps and outliers can be communicated naturally using spatial relationships, shading, and colors. In the WEBSOM method the self-organizing map (SOM) algorithm is used to automatically organize very large and high-dimensional collections of text documents onto two-dimensional map displays. The map forms a document landscape where similar documents appear close to each other at points of the regular map grid. The landscape can be labeled with automatically identified descriptive words that convey properties of each area and also act as landmarks during exploration. With the help of an HTML-based interactive tool the ordered landscape can be used in browsing the document collection and in performing searches on the map. An organized map offers an overview of an unknown document collection helping the user in familiarizing herself with the domain. Map displays that are already familiar can be used as visual frames of reference for conveying properties of unknown text items. Static, thematically arranged document landscapes provide meaningful backgrounds for dynamic visualizations of for example time-related properties of the data. Search results can be visualized in the context of related documents. Experiments on document collections of various sizes, text types, and languages show that the WEBSOM method is scalable and generally applicable. Preliminary results in a text retrieval experiment indicate that even when the additional value provided by the visualization is disregarded the document maps perform at least comparably with more conventional retrieval methods.reviewe

    Topographic maps of semantic space

    Get PDF

    Discovering a Domain Knowledge Representation for Image Grouping: Multimodal Data Modeling, Fusion, and Interactive Learning

    Get PDF
    In visually-oriented specialized medical domains such as dermatology and radiology, physicians explore interesting image cases from medical image repositories for comparative case studies to aid clinical diagnoses, educate medical trainees, and support medical research. However, general image classification and retrieval approaches fail in grouping medical images from the physicians\u27 viewpoint. This is because fully-automated learning techniques cannot yet bridge the gap between image features and domain-specific content for the absence of expert knowledge. Understanding how experts get information from medical images is therefore an important research topic. As a prior study, we conducted data elicitation experiments, where physicians were instructed to inspect each medical image towards a diagnosis while describing image content to a student seated nearby. Experts\u27 eye movements and their verbal descriptions of the image content were recorded to capture various aspects of expert image understanding. This dissertation aims at an intuitive approach to extracting expert knowledge, which is to find patterns in expert data elicited from image-based diagnoses. These patterns are useful to understand both the characteristics of the medical images and the experts\u27 cognitive reasoning processes. The transformation from the viewed raw image features to interpretation as domain-specific concepts requires experts\u27 domain knowledge and cognitive reasoning. This dissertation also approximates this transformation using a matrix factorization-based framework, which helps project multiple expert-derived data modalities to high-level abstractions. To combine additional expert interventions with computational processing capabilities, an interactive machine learning paradigm is developed to treat experts as an integral part of the learning process. Specifically, experts refine medical image groups presented by the learned model locally, to incrementally re-learn the model globally. This paradigm avoids the onerous expert annotations for model training, while aligning the learned model with experts\u27 sense-making

    Concept-based Text Clustering

    Get PDF
    Thematic organization of text is a natural practice of humans and a crucial task for today's vast repositories. Clustering automates this by assessing the similarity between texts and organizing them accordingly, grouping like ones together and separating those with different topics. Clusters provide a comprehensive logical structure that facilitates exploration, search and interpretation of current texts, as well as organization of future ones. Automatic clustering is usually based on words. Text is represented by the words it mentions, and thematic similarity is based on the proportion of words that texts have in common. The resulting bag-of-words model is semantically ambiguous and undesirably orthogonal|it ignores the connections between words. This thesis claims that using concepts as the basis of clustering can significantly improve effectiveness. Concepts are defined as units of knowledge. When organized according to the relations among them, they form a concept system. Two concept systems are used here: WordNet, which focuses on word knowledge, and Wikipedia, which encompasses world knowledge. We investigate a clustering procedure with three components: using concepts to represent text; taking the semantic relations among them into account during clustering; and learning a text similarity measure from concepts and their relations. First, we demonstrate that concepts provide a succinct and informative representation of the themes in text, exemplifying this with the two concept systems. Second, we define methods for utilizing concept relations to enhance clustering by making the representation models more discriminative and extending thematic similarity beyond surface overlap. Third, we present a similarity measure based on concepts and their relations that is learned from a small number of examples, and show that it both predicts similarity consistently with human judgement and improves clustering. The thesis provides strong support for the use of concept-based representations instead of the classic bag-of-words model

    Applying Wikipedia to Interactive Information Retrieval

    Get PDF
    There are many opportunities to improve the interactivity of information retrieval systems beyond the ubiquitous search box. One idea is to use knowledge bases—e.g. controlled vocabularies, classification schemes, thesauri and ontologies—to organize, describe and navigate the information space. These resources are popular in libraries and specialist collections, but have proven too expensive and narrow to be applied to everyday webscale search. Wikipedia has the potential to bring structured knowledge into more widespread use. This online, collaboratively generated encyclopaedia is one of the largest and most consulted reference works in existence. It is broader, deeper and more agile than the knowledge bases put forward to assist retrieval in the past. Rendering this resource machine-readable is a challenging task that has captured the interest of many researchers. Many see it as a key step required to break the knowledge acquisition bottleneck that crippled previous efforts. This thesis claims that the roadblock can be sidestepped: Wikipedia can be applied effectively to open-domain information retrieval with minimal natural language processing or information extraction. The key is to focus on gathering and applying human-readable rather than machine-readable knowledge. To demonstrate this claim, the thesis tackles three separate problems: extracting knowledge from Wikipedia; connecting it to textual documents; and applying it to the retrieval process. First, we demonstrate that a large thesaurus-like structure can be obtained directly from Wikipedia, and that accurate measures of semantic relatedness can be efficiently mined from it. Second, we show that Wikipedia provides the necessary features and training data for existing data mining techniques to accurately detect and disambiguate topics when they are mentioned in plain text. Third, we provide two systems and user studies that demonstrate the utility of the Wikipedia-derived knowledge base for interactive information retrieval

    Action-oriented Scene Understanding

    Get PDF
    In order to allow robots to act autonomously it is crucial that they do not only describe their environment accurately but also identify how to interact with their surroundings. While we witnessed tremendous progress in descriptive computer vision, approaches that explicitly target action are scarcer. This cumulative dissertation approaches the goal of interpreting visual scenes “in the wild” with respect to actions implied by the scene. We call this approach action-oriented scene understanding. It involves identifying and judging opportunities for interaction with constituents of the scene (e.g. objects and their parts) as well as understanding object functions and how interactions will impact the future. All of these aspects are addressed on three levels of abstraction: elements, perception and reasoning. On the elementary level, we investigate semantic and functional grouping of objects by analyzing annotated natural image scenes. We compare object label-based and visual context definitions with respect to their suitability for generating meaningful object class representations. Our findings suggest that representations generated from visual context are on-par in terms of semantic quality with those generated from large quantities of text. The perceptive level concerns action identification. We propose a system to identify possible interactions for robots and humans with the environment (affordances) on a pixel level using state-of-the-art machine learning methods. Pixel-wise part annotations of images are transformed into 12 affordance maps. Using these maps, a convolutional neural network is trained to densely predict affordance maps from unknown RGB images. In contrast to previous work, this approach operates exclusively on RGB images during both, training and testing, and yet achieves state-of-the-art performance. At the reasoning level, we extend the question from asking what actions are possible to what actions are plausible. For this, we gathered a dataset of household images associated with human ratings of the likelihoods of eight different actions. Based on the judgement provided by the human raters, we train convolutional neural networks to generate plausibility scores from unseen images. Furthermore, having considered only static scenes previously in this thesis, we propose a system that takes video input and predicts plausible future actions. Since this requires careful identification of relevant features in the video sequence, we analyze this particular aspect in detail using a synthetic dataset for several state-of-the-art video models. We identify feature learning as a major obstacle for anticipation in natural video data. The presented projects analyze the role of action in scene understanding from various angles and in multiple settings while highlighting the advantages of assuming an action-oriented perspective. We conclude that action-oriented scene understanding can augment classic computer vision in many real-life applications, in particular robotics
    corecore