7,093 research outputs found

    Using Posterior-Based Features in Template Matching for Speech Recognition

    Get PDF
    Given the availability of large speech corpora, as well as the increasing of memory and computational resources, the use of template matching approaches for automatic speech recognition (ASR) have recently attracted new attention. In such template-based approaches, speech is typically represented in terms of acoustic vector sequences, using spectral-based features such as MFCC of PLP, and local distances are usually based on Euclidean or Mahalanobis distances. In the present paper, we further investigate template-based ASR and show (on a continuous digit recognition task) that the use of posterior-based features significantly improves the standard template-based approaches, yielding to systems that are very competitive to state-of-the-art HMMs, even when using a very limited number (e.g., 10) of reference templates. Since those posteriors-based features can also be interpreted as a probability distribution, we also show that using Kullback-Leibler (KL) divergence as a local distance further improves the performance of the template-based approach, now beating state-of-the-art of more complex posterior-based HMMs systems (usually referred to as "Tandem")

    Using Posterior-Based Features in Template Matching for Speech Recognition

    Get PDF
    Given the availability of large speech corpora, as well as the increasing of memory and computational resources, the use of template matching approaches for automatic speech recognition (ASR) have recently attracted new attention. In such template-based approaches, speech is typically represented in terms of acoustic vector sequences, using spectral-based features such as MFCC of PLP, and local distances are usually based on Euclidean or Mahalanobis distances. In the present paper, we further investigate template-based ASR and show (on a continuous digit recognition task) that the use of posterior-based features significantly improves the standard template-based approaches, yielding to systems that are very competitive to state-of-the-art HMMs, even when using a very limited number (e.g., 10) of reference templates. Since those posteriors-based features can also be interpreted as a probability distribution, we also show that using Kullback-Leibler (KL) divergence as a local distance further improves the performance of the template-based approach, now beating state-of-the-art of more complex posterior-based HMMs systems (usually referred to as "Tandem")

    Likelihood-Ratio-Based Biometric Verification

    Get PDF
    The paper presents results on optimal similarity measures for biometric verification based on fixed-length feature vectors. First, we show that the verification of a single user is equivalent to the detection problem, which implies that, for single-user verification, the likelihood ratio is optimal. Second, we show that, under some general conditions, decisions based on posterior probabilities and likelihood ratios are equivalent and result in the same receiver operating curve. However, in a multi-user situation, these two methods lead to different average error rates. As a third result, we prove theoretically that, for multi-user verification, the use of the likelihood ratio is optimal in terms of average error rates. The superiority of this method is illustrated by experiments in fingerprint verification. It is shown that error rates below 10/sup -3/ can be achieved when using multiple fingerprints for template construction

    Scientific Information Extraction with Semi-supervised Neural Tagging

    Full text link
    This paper addresses the problem of extracting keyphrases from scientific articles and categorizing them as corresponding to a task, process, or material. We cast the problem as sequence tagging and introduce semi-supervised methods to a neural tagging model, which builds on recent advances in named entity recognition. Since annotated training data is scarce in this domain, we introduce a graph-based semi-supervised algorithm together with a data selection scheme to leverage unannotated articles. Both inductive and transductive semi-supervised learning strategies outperform state-of-the-art information extraction performance on the 2017 SemEval Task 10 ScienceIE task.Comment: accepted by EMNLP 201

    Experimental studies on effect of speaking mode on spoken term detection

    Get PDF
    The objective of this paper is to study the effect of speaking mode on spoken term detection (STD) system. The experiments are conducted with respect to query words recorded in isolated manner and words cut out from continuous speech. Durations of phonemes in query words greatly vary between these two modes. Hence pattern matching stage plays a crucial role which takes care of temporal variations. Matching is done using Subsequence dynamic time warping (DTW) on posterior features of query and reference utterances, obtained by training Multilayer perceptron (MLP). The difference in performance of the STD system for different phoneme groupings (45, 25, 15 and 6 classes) is also analyzed. Our STD system is tested on Telugu broadcast news. Major difference in STD system performance is observed for recorded and cut-out types of query words. It is observed that STD system performance is better with query words cut out from continuous speech compared to words recorded in isolated manner. This performance difference can be accounted for large temporal variations
    corecore