3 research outputs found

    Resilient virtual topologies in optical networks and clouds

    Get PDF
    Optical networks play a crucial role in the development of Internet by providing a high speed infrastructure to cope with the rapid expansion of high bandwidth demand applications such as video, HDTV, teleconferencing, cloud computing, and so on. Network virtualization has been proposed as a key enabler for the next generation networks and the future Internet because it allows diversification the underlying architecture of Internet and lets multiple heterogeneous network architectures coexist. Physical network failures often come from natural disasters or human errors, and thus cannot be fully avoided. Today, with the increase of network traffic and the popularity of virtualization and cloud computing, due to the sharing nature of network virtualization, one single failure in the underlying physical network can affect thousands of customers and cost millions of dollars in revenue. Providing resilience for virtual network topology over optical network infrastructure thus becomes of prime importance. This thesis focuses on resilient virtual topologies in optical networks and cloud computing. We aim at finding more scalable models to solve the problem of designing survivable logical topologies for more realistic and meaningful network instances while meeting the requirements on bandwidth, security, as well as other quality of service such as recovery time. To address the scalability issue, we present a model based on a column generation decomposition. We apply the cutset theorem with a decomposition framework and lazy constraints. We are able to solve for much larger network instances than the ones in literature. We extend the model to address the survivability problem in the context of optical networks where the characteristics of optical networks such as lightpaths and wavelength continuity and traffic grooming are taken into account. We analyze and compare the bandwidth requirement between the two main approaches in providing resiliency for logical topologies. In the first approach, called optical protection, the resilient mechanism is provided by the optical layer. In the second one, called logical restoration, the resilient mechanism is done at the virtual layer. Next, we extend the survivability problem into the context of cloud computing where the major complexity arises from the anycast principle. We are able to solve the problem for much larger network instances than in the previous studies. Moreover, our model is more comprehensive that takes into account other QoS criteria, such that recovery time and delay requirement

    Time-varying Resilient Virtual Networking Mapping for Multi-location Cloud Data Centers

    Get PDF
    Abstract In the currently dominant cloud computing paradigm, applications are being served in data centers (DCs), which are connected to high capacity optical networks. For bandwidth and consequently cost efficiency reasons, in both DC and optical network domains, virtualization of the physical hardware is exploited. In a DC, it means that multiple so-called virtual machines (VMs) are being hosted on the same physical server. Similarly, the network is partitioned into separate virtual networks, thus providing isolation between distinct virtual network operators (VNOs). Thus, the problem of virtual network mapping arises: how to decide which physical resources to allocate for a particular virtual network? In this thesis, we study that problem in the context of cloud computing with multiple DC sites. This introduces additional flexibility, due to the anycast routing principle: we have the freedom to decide at what particular DC location to serve a particular application. We can exploit this choice to minimize the required resources when solving the virtual network mapping problem. This thesis solves a resilient virtual network mapping problem that optimally decides on the mapping of both network and data center resources, considering time-varying traffic conditions and protecting against possible failures of both network and DC resources. We consider the so-called VNO resilience scheme: rerouting under failure conditions is provided in the virtual network layer. To minimize physical resource capacity requirements, we allow reuse of both network and DC resources: we can reuse the same resources for the rerouting under failure scenarios that are assumed not to occur simultaneously. Since we also protect against DC failures, we allocate backup DC resources, and account for synchronization between primary and backup DCs. To deal with the time variations in the volume and geographical pattern of the application traffic, we investigate the potential benefits (in terms iii of overall bandwidth requirements) of reconfiguring the virtual network mapping from one time period to the next. We provide models with good scalability, and investigate different scenarios to check whether it is worth to change routing for service requirement between time periods. The results come up with our experiments show that the benefits for rerouting is very limited. Keywords: Cloud Computing, Optical Networks, Virtualization, Anycast, VNO resilienc

    Scalable Column Generation Models and Algorithms for Optical Network Planning Problems

    Get PDF
    Column Generation Method has been proved to be a powerful tool to model and solve large scale optimization problems in various practical domains such as operation management, logistics and computer design. Such a decomposition approach has been also applied in telecommunication for several classes of classical network design and planning problems with a great success. In this thesis, we confirm that Column Generation Methodology is also a powerful tool in solving several contemporary network design problems that come from a rising worldwide demand of heavy traffic (100Gbps, 400Gbps, and 1Tbps) with emphasis on cost-effective and resilient networks. Such problems are very challenging in terms of complexity as well as solution quality. Research in this thesis attacks four challenging design problems in optical networks: design of p-cycles subject to wavelength continuity, design of dependent and independent p-cycles against multiple failures, design of survivable virtual topologies against multiple failures, design of a multirate optical network architecture. For each design problem, we develop a new mathematical models based on Column Generation Decomposition scheme. Numerical results show that Column Generation methodology is the right choice to deal with hard network design problems since it allows us to efficiently solve large scale network instances which have been puzzles for the current state of art. Additionally, the thesis reveals the great flexibility of Column Generation in formulating design problems that have quite different natures as well as requirements. Obtained results in this thesis show that, firstly, the design of p-cycles should be under a wavelength continuity assumption in order to save the converter cost since the difference between the capacity requirement under wavelength conversion vs. under wavelength continuity is insignificant. Secondly, such results which come from our new general design model for failure dependent p-cycles prove the fact that failure dependent p-cycles save significantly spare capacity than failure independent p-cycles. Thirdly, large instances can be quasi-optimally solved in case of survivable topology designs thanks to our new path-formulation model with online generation of augmenting paths. Lastly, the importance of high capacity devices such as 100Gbps transceiver and the impact of the restriction on number of regeneration sites to the provisioning cost of multirate WDM networks are revealed through our new hierarchical Column Generation model
    corecore