2 research outputs found

    On Subadditive Duality for Conic Mixed-Integer Programs

    Get PDF
    In this paper, we show that the subadditive dual of a feasible conic mixed-integer program (MIP) is a strong dual whenever it is feasible. Moreover, we show that this dual feasibility condition is equivalent to feasibility of the conic dual of the continuous relaxation of the conic MIP. In addition, we prove that all known conditions and other 'natural' conditions for strong duality, such as strict mixed-integer feasibility, boundedness of the feasible set or essentially strict feasibility imply that the subadditive dual is feasible. As an intermediate result, we extend the so-called 'finiteness property' from full-dimensional convex sets to intersections of full-dimensional convex sets and Dirichlet convex sets

    Valid Inequalities and Facets for Multi-Module (Survivable) Capacitated Network Design Problem

    Get PDF
    In this dissertation, we develop new methodologies and algorithms to solve the multi-module (survivable) network design problem. Many real-world decision-making problems can be modeled as network design problems, especially on networks with capacity requirements on arcs or edges. In most cases, network design problems of this type that have been studied involve different types of capacity sizes (modules), and we call them the multi-module capacitated network design (MMND) problem. MMND problems arise in various industrial applications, such as transportation, telecommunication, power grid, data centers, and oil production, among many others. In the first part of the dissertation, we study the polyhedral structure of the MMND problem. We summarize current literature on polyhedral study of MMND, which generates the family of the so-called cutset inequalities based on the traditional mixed integer rounding (MIR). We then introduce a new family of inequalities for MMND based on the so-called n-step MIR, and show that various classes of cutset inequalities in the literature are special cases of these inequalities. We do so by studying a mixed integer set, the cutset polyhedron, which is closely related to MMND. We We also study the strength of this family of inequalities by providing some facet-defining conditions. These inequalities are then tested on MMND instances, and our computational results show that these classes of inequalities are very effective for solving MMND problems. Generalizations of these inequalities for some variants of MMND are also discussed. Network design problems have many generalizations depending on the application. In the second part of the dissertation, we study a highly applicable form of SND, referred to as multi-module SND (MM-SND), in which transmission capacities on edges can be sum of integer multiples of differently sized capacity modules. For the first time, we formulate MM-SND as a mixed integer program (MIP) using preconfigured-cycles (p-cycles) to reroute flow on failed edges. We derive several classes of valid inequalities for this MIP, and show that the valid inequalities previously developed in the literature for single-module SND are special cases of our inequalities. Furthermore, we show that our valid inequalities are facet-defining for MM-SND in many cases. Our computational results, using a heuristic separation algorithm, show that these inequalities are very effective in solving MM-SND. In particular they are more effective than compared to using single-module inequalities alone. Lastly, we generalize the inequalities for MMND for other mixed integer sets relaxed from MMND and the cutset polyhedron. These inequalities also generalize several valid inequalities in the literature. We conclude the dissertation by summarizing the work and pointing out potential directions for future research
    corecore