3,547 research outputs found

    You Cannot Fix What You Cannot Find! An Investigation of Fault Localization Bias in Benchmarking Automated Program Repair Systems

    Get PDF
    Properly benchmarking Automated Program Repair (APR) systems should contribute to the development and adoption of the research outputs by practitioners. To that end, the research community must ensure that it reaches significant milestones by reliably comparing state-of-the-art tools for a better understanding of their strengths and weaknesses. In this work, we identify and investigate a practical bias caused by the fault localization (FL) step in a repair pipeline. We propose to highlight the different fault localization configurations used in the literature, and their impact on APR systems when applied to the Defects4J benchmark. Then, we explore the performance variations that can be achieved by `tweaking' the FL step. Eventually, we expect to create a new momentum for (1) full disclosure of APR experimental procedures with respect to FL, (2) realistic expectations of repairing bugs in Defects4J, as well as (3) reliable performance comparison among the state-of-the-art APR systems, and against the baseline performance results of our thoroughly assessed kPAR repair tool. Our main findings include: (a) only a subset of Defects4J bugs can be currently localized by commonly-used FL techniques; (b) current practice of comparing state-of-the-art APR systems (i.e., counting the number of fixed bugs) is potentially misleading due to the bias of FL configurations; and (c) APR authors do not properly qualify their performance achievement with respect to the different tuning parameters implemented in APR systems.Comment: Accepted by ICST 201

    Dissection of a Bug Dataset: Anatomy of 395 Patches from Defects4J

    Full text link
    Well-designed and publicly available datasets of bugs are an invaluable asset to advance research fields such as fault localization and program repair as they allow directly and fairly comparison between competing techniques and also the replication of experiments. These datasets need to be deeply understood by researchers: the answer for questions like "which bugs can my technique handle?" and "for which bugs is my technique effective?" depends on the comprehension of properties related to bugs and their patches. However, such properties are usually not included in the datasets, and there is still no widely adopted methodology for characterizing bugs and patches. In this work, we deeply study 395 patches of the Defects4J dataset. Quantitative properties (patch size and spreading) were automatically extracted, whereas qualitative ones (repair actions and patterns) were manually extracted using a thematic analysis-based approach. We found that 1) the median size of Defects4J patches is four lines, and almost 30% of the patches contain only addition of lines; 2) 92% of the patches change only one file, and 38% has no spreading at all; 3) the top-3 most applied repair actions are addition of method calls, conditionals, and assignments, occurring in 77% of the patches; and 4) nine repair patterns were found for 95% of the patches, where the most prevalent, appearing in 43% of the patches, is on conditional blocks. These results are useful for researchers to perform advanced analysis on their techniques' results based on Defects4J. Moreover, our set of properties can be used to characterize and compare different bug datasets.Comment: Accepted for SANER'18 (25th edition of IEEE International Conference on Software Analysis, Evolution and Reengineering), Campobasso, Ital

    Automated Fixing of Programs with Contracts

    Full text link
    This paper describes AutoFix, an automatic debugging technique that can fix faults in general-purpose software. To provide high-quality fix suggestions and to enable automation of the whole debugging process, AutoFix relies on the presence of simple specification elements in the form of contracts (such as pre- and postconditions). Using contracts enhances the precision of dynamic analysis techniques for fault detection and localization, and for validating fixes. The only required user input to the AutoFix supporting tool is then a faulty program annotated with contracts; the tool produces a collection of validated fixes for the fault ranked according to an estimate of their suitability. In an extensive experimental evaluation, we applied AutoFix to over 200 faults in four code bases of different maturity and quality (of implementation and of contracts). AutoFix successfully fixed 42% of the faults, producing, in the majority of cases, corrections of quality comparable to those competent programmers would write; the used computational resources were modest, with an average time per fix below 20 minutes on commodity hardware. These figures compare favorably to the state of the art in automated program fixing, and demonstrate that the AutoFix approach is successfully applicable to reduce the debugging burden in real-world scenarios.Comment: Minor changes after proofreadin

    Amortising the Cost of Mutation Based Fault Localisation using Statistical Inference

    Full text link
    Mutation analysis can effectively capture the dependency between source code and test results. This has been exploited by Mutation Based Fault Localisation (MBFL) techniques. However, MBFL techniques suffer from the need to expend the high cost of mutation analysis after the observation of failures, which may present a challenge for its practical adoption. We introduce SIMFL (Statistical Inference for Mutation-based Fault Localisation), an MBFL technique that allows users to perform the mutation analysis in advance against an earlier version of the system. SIMFL uses mutants as artificial faults and aims to learn the failure patterns among test cases against different locations of mutations. Once a failure is observed, SIMFL requires either almost no or very small additional cost for analysis, depending on the used inference model. An empirical evaluation of SIMFL using 355 faults in Defects4J shows that SIMFL can successfully localise up to 103 faults at the top, and 152 faults within the top five, on par with state-of-the-art alternatives. The cost of mutation analysis can be further reduced by mutation sampling: SIMFL retains over 80% of its localisation accuracy at the top rank when using only 10% of generated mutants, compared to results obtained without sampling
    • …
    corecore