4 research outputs found

    Using Wireless Network Coding to Replace a Wired with Wireless Backhaul

    Get PDF
    Abstract-Cellular networks are evolving towards dense deployment of small cells, which requires flexible and efficient backhauling solutions. A viable solution that reuses the same spectrum is wireless backhaul where the Small Base Station (SBS) acts as a relay. In this paper we consider a reference system that uses wired backhaul and each Mobile Station (MS) in the small cell has its uplink and downlink rates defined. The central question is: if we remove the wired backhaul, how much extra power should the wireless backhaul use in order to support the same uplink/downlink rates? We introduce the idea of wirelessemulated wire (WEW), based on two-way relaying and network coding. This setup leads to a new type of broadcast problem, with decoding conditions that are specific to the requirement for equivalence to the wired backhaul. We formulate and solve the associated optimization problems. The proposed approach is a convincing argument that wireless backhauling solutions should be designed and optimized for two-way communication

    Wireless Transmission Methods for Ultra-dense Cellular Networks and Machine-type Communications

    Get PDF

    Using Wireless Network Coding to Replace a Wired with Wireless Backhaul

    No full text
    Cellular networks are evolving towards dense deployment of small cells. This in turn demands flexible and efficient backhauling solutions. A viable solution that reuses the same spectrum is wireless backhaul where the Small Base Station (SBS) acts as a relay. In this paper we consider a reference system that uses wired backhaul and each Mobile Station (MS) in the small cell has its uplink and downlink rates defined. The central question is: if we remove the wired backhaul, how much extra power should the wireless backhaul use in order to support the same uplink/downlink rates? We introduce the idea of wireless-emulated wire (WEW), based on two-way relaying and network coding. Furthermore, in a scenario where two SBSs are served simultaneously, WEW gives rise to new communication strategies, partially inspired by the private/public messages from the Han-Kobayashi scheme for interference channel. We formulate and solve the associated optimization problems. The proposed approach provides a convincing argument that two-way communication is the proper context to design and optimize wireless backhauling solutions.Comment: 6 pages (double-column), 5 figures, submitted to Globecom 201

    Achieving reliable and enhanced communication in vehicular ad hoc networks (VANETs)

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirement for the degree of Doctor of PhilosophyWith the envisioned age of Internet of Things (IoTs), different aspects of Intelligent Transportation System (ITS) will be linked so as to advance road transportation safety, ease congestion of road traffic, lessen air pollution, improve passenger transportation comfort and significantly reduce road accidents. In vehicular networks, regular exchange of current position, direction, speed, etc., enable mobile vehicle to foresee an imminent vehicle accident and notify the driver early enough in order to take appropriate action(s) or the vehicle on its own may take adequate preventive measures to avert the looming accident. Actualizing this concept requires use of shared media access protocol that is capable of guaranteeing reliable and timely broadcast of safety messages. This dissertation investigates the use of Network Coding (NC) techniques to enrich the content of each transmission and ensure improved high reliability of the broadcasted safety messages with less number of retransmissions. A Code Aided Retransmission-based Error Recovery (CARER) protocol is proposed. In order to avoid broadcast storm problem, a rebroadcasting vehicle selection metric η, is developed, which is used to select a vehicle that will rebroadcast the received encoded message. Although the proposed CARER protocol demonstrates an impressive performance, the level of incurred overhead is fairly high due to the use of complex rebroadcasting vehicle selection metric. To resolve this issue, a Random Network Coding (RNC) and vehicle clustering based vehicular communication scheme with low algorithmic complexity, named Reliable and Enhanced Cooperative Cross-layer MAC (RECMAC) scheme, is proposed. The use of this clustering technique enables RECMAC to subdivide the vehicular network into small manageable, coordinated clusters which further improve transmission reliability and minimise negative impact of network overhead. Similarly, a Cluster Head (CH) selection metric ℱ(\u1d457) is designed, which is used to determine and select the most suitably qualified candidate to become the CH of a particular cluster. Finally, in order to investigate the impact of available radio spectral resource, an in-depth study of the required amount of spectrum sufficient to support high transmission reliability and minimum latency requirements of critical road safety messages in vehicular networks was carried out. The performance of the proposed schemes was clearly shown with detailed theoretical analysis and was further validated with simulation experiments
    corecore