1 research outputs found

    Using UWB Measurements for Statistical Analysis of the Ranging Error in Indoor Multipath Environment,” accepted for publication

    No full text
    Abstract: In this paper we use UWB measurements for bandwidths up to 3GHz to present a framework for statistical modeling of the indoor radio channel propagation characteristics that are pertinent to precise indoor geolocation using time-of-arrival (TOA) estimations. Accuracy of indoor geolocation systems relies on the strength and TOA of the direct path (DP) in the channel profile. Based on UWB measurements in a typical office building, we introduce empirical models for the path-loss and TOA of the DP. We use path-loss model for the DP to analyze the occurrence of the undetected direct path (UDP) conditions which cause large errors in indoor geolocation systems. Then we introduce a novel statistical model for the ranging or distance measurement error (DME) which is needed for comparative performance evaluation of the indoor positioning algorithms. The DME is a function of the bandwidth of the system, occurrence of the UDP conditions, and the distance between the transmitter and the receiver
    corecore