10,551 research outputs found

    Model-driven performance evaluation for service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Software quality aspects such as performance are of central importance for the integration of heterogeneous, distributed service-based systems. Empirical performance evaluation is a process of measuring and calculating performance metrics of the implemented software. We present an approach for the empirical, model-based performance evaluation of services and service compositions in the context of model-driven service engineering. Temporal databases theory is utilised for the empirical performance evaluation of model-driven developed service systems

    Semantic model-driven development of web service architectures.

    Get PDF
    Building service-based architectures has become a major area of interest since the advent of Web services. Modelling these architectures is a central activity. Model-driven development is a recent approach to developing software systems based on the idea of making models the central artefacts for design representation, analysis, and code generation. We propose an ontology-based engineering methodology for semantic model-driven composition and transformation of Web service architectures. Ontology technology as a logic-based knowledge representation and reasoning framework can provide answers to the needs of sharable and reusable semantic models and descriptions needed for service engineering. Based on modelling, composition and code generation techniques for service architectures, our approach provides a methodological framework for ontology-based semantic service architecture

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    Automated Mapping of UML Activity Diagrams to Formal Specifications for Supporting Containment Checking

    Full text link
    Business analysts and domain experts are often sketching the behaviors of a software system using high-level models that are technology- and platform-independent. The developers will refine and enrich these high-level models with technical details. As a consequence, the refined models can deviate from the original models over time, especially when the two kinds of models evolve independently. In this context, we focus on behavior models; that is, we aim to ensure that the refined, low-level behavior models conform to the corresponding high-level behavior models. Based on existing formal verification techniques, we propose containment checking as a means to assess whether the system's behaviors described by the low-level models satisfy what has been specified in the high-level counterparts. One of the major obstacles is how to lessen the burden of creating formal specifications of the behavior models as well as consistency constraints, which is a tedious and error-prone task when done manually. Our approach presented in this paper aims at alleviating the aforementioned challenges by considering the behavior models as verification inputs and devising automated mappings of behavior models onto formal properties and descriptions that can be directly used by model checkers. We discuss various challenges in our approach and show the applicability of our approach in illustrative scenarios.Comment: In Proceedings FESCA 2014, arXiv:1404.043
    • ā€¦
    corecore