2 research outputs found

    Using synchronized lightweight state observers to minimise wireless sensor resource utilisation

    Full text link
    A major trend in the evolution of the Web is the rapidly growing numbers of web-enabled sensors which provide a rich ability to monitor and control our physical environment. The devices are often cheap, lightweight, rapidly deployed and densely interconnected. The current dominant models of Web-based data monitoring are not well-adapted to the operational needs of these devices, particularly in terms of resource utilization. In this paper we describe an approach to the optimization of the resources utilized by these devices based on the use of synchronized state-observers. By embedding state observers with a minimized footprint into both the sensors and the monitoring Web client, we show that it is possible to minimize the utilization of limited sensor resources such as power and bandwidth, and hence to improve the performance and potential applications of these devices

    USING SYNCHRONIZED LIGHTWEIGHT STATE OBSERVERS TO MINIMISE WIRELESS SENSOR RESOURCE UTILISATION

    No full text
    Abstract: A major trend in the evolution of the Web is the rapidly growing numbers of web-enabled sensors which provide a rich ability to monitor and control our physical environment. The devices are often cheap, lightweight, rapidly deployed and densely interconnected. The current dominant models of Web-based data monitoring are not well-adapted to the operational needs of these devices, particularly in terms of resource utilization. In this paper we describe an approach to the optimization of the resources utilized by these devices based on the use of synchronized state-observers. By embedding state observers with a minimized footprint into both the sensors and the monitoring Web client, we show that it is possible to minimize the utilization of limited sensor resources such as power and bandwidth, and hence to improve the performance and potential applications of these devices
    corecore