7,380 research outputs found

    Using Spectral Radius Ratio for Node Degree to Analyze the Evolution of Scale Free Networks and Small World Networks

    Full text link
    In this paper, we show the evaluation of the spectral radius for node degree as the basis to analyze the variation in the node degrees during the evolution of scale-free networks and small-world networks. Spectral radius is the principal eigenvalue of the adjacency matrix of a network graph and spectral radius ratio for node degree is the ratio of the spectral radius and the average node degree. We observe a very high positive correlation between the spectral radius ratio for node degree and the coefficient of variation of node degree (ratio of the standard deviation of node degree and average node degree). We show how the spectral radius ratio for node degree can be used as the basis to tune the operating parameters of the evolution models for scale-free networks and small-world networks as well as evaluate the impact of the number of links added per node introduced during the evolution of a scale-free network and evaluate the impact of the probability of rewiring during the evolution of a small-world network from a regular network.Comment: 8 pages, 8 figures, Second International Conference on Computer Science and Information Technology, (COSIT-2015), Geneva, Switzerland, March 21-22, 201

    Effect of Coupling on the Epidemic Threshold in Interconnected Complex Networks: A Spectral Analysis

    Full text link
    In epidemic modeling, the term infection strength indicates the ratio of infection rate and cure rate. If the infection strength is higher than a certain threshold -- which we define as the epidemic threshold - then the epidemic spreads through the population and persists in the long run. For a single generic graph representing the contact network of the population under consideration, the epidemic threshold turns out to be equal to the inverse of the spectral radius of the contact graph. However, in a real world scenario it is not possible to isolate a population completely: there is always some interconnection with another network, which partially overlaps with the contact network. Results for epidemic threshold in interconnected networks are limited to homogeneous mixing populations and degree distribution arguments. In this paper, we adopt a spectral approach. We show how the epidemic threshold in a given network changes as a result of being coupled with another network with fixed infection strength. In our model, the contact network and the interconnections are generic. Using bifurcation theory and algebraic graph theory, we rigorously derive the epidemic threshold in interconnected networks. These results have implications for the broad field of epidemic modeling and control. Our analytical results are supported by numerical simulations.Comment: 7 page

    Approximating Spectral Impact of Structural Perturbations in Large Networks

    Full text link
    Determining the effect of structural perturbations on the eigenvalue spectra of networks is an important problem because the spectra characterize not only their topological structures, but also their dynamical behavior, such as synchronization and cascading processes on networks. Here we develop a theory for estimating the change of the largest eigenvalue of the adjacency matrix or the extreme eigenvalues of the graph Laplacian when small but arbitrary set of links are added or removed from the network. We demonstrate the effectiveness of our approximation schemes using both real and artificial networks, showing in particular that we can accurately obtain the spectral ranking of small subgraphs. We also propose a local iterative scheme which computes the relative ranking of a subgraph using only the connectivity information of its neighbors within a few links. Our results may not only contribute to our theoretical understanding of dynamical processes on networks, but also lead to practical applications in ranking subgraphs of real complex networks.Comment: 9 pages, 3 figures, 2 table
    corecore