604 research outputs found

    Internet Traffic based Channel Selection in Multi-Radio Multi-Channel Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks(WMNs) are the outstanding technology to facilitate wireless broadband Internet access to users. Routers in WMN have multiple radio interfaces to which multiple orthogonal/partially overlapping channels are assigned to improve the capacity of WMN. This paper is focused on channel selection problem in WMN since proper channel selection to radio interfaces of mesh router increases the performance of WMN. To access the Internet through WMN, the users have to associate with one of the mesh routers. Since most of the Internet Servers are still in wired networks, the major dominant traffic of Internet users is in downlink direction i.e. from the gateway of WMN to user. This paper proposes a new method of channel selection to improve the user performance in downlink direction of Internet traffic. The method is scalable and completely distributed solution to the problem of channel selection in WMN. The simulation results indicate the significant improvement in user performance

    An Efficient Interference Aware Partially Overlapping Channel Assignment and Routing in Wireless Mesh Networks

    Get PDF
    In recent years, multi-channel multi-radio wireless mesh networks are considered a reliable and cost effective way for internet access in wide area. A major research challenge in this network is, selecting a least interference channel from the available channels, efficiently assigning a radio to the selected channel, and routing packets through the least interference path. Many algorithms and methods have been developed for channel assignment to maximize the network throughput using orthogonal channels. Recent research and test-bed experiments have proved that POC (Partially Overlapped Channels) based channel assignment allows significantly more flexibility in wireless spectrum sharing. In this paper, first we represent the channel assignment as a graph edge coloring problem using POC. The signal-to-noise plus interference ratio is measured to avoid interference from neighbouring transmissions, when a channel is assigned to the link. Second we propose a new routing metric called signal-to-noise plus interference ratio (SINR) value which measures interference in each link and routing algorithm works based on the interference information. The simulation results show that the channel assignment and interference aware routing algorithm, proposed in this paper, improves the network throughput and performance

    Performance evaluation of interference aware topology power and flow control channel assignment algorithm

    Get PDF
    Multi-Radio Multi-Channel Wireless Mesh Network (MRMC-WMN) has been considered as one of the key technology for the enhancement of network performance. It is used in a number of real-time applications such as disaster management system, transportation system and health care system. MRMC-WMN is a multi-hop network and allows simultaneous data transfer by using multiple radio interfaces. All the radio interfaces are typically assigned with different channels to reduce the effect of co-channel interference. In MRMC-WMN, when two nodes transmit at the same channel in the range of each other, generates co-channel interference and degrades the network throughput. Co-channel interference badly affects the capacity of each link that reduces the overall network performance. Thus, the important task of channel assignment algorithm is to reduce the co-channel interference and enhance the network performance. In this paper, the problem of channel assignment has been addressed for MRMC-WMN. We have proposed an Interference Aware, Topology, Power and Flow Control (ITPFC) Channel Assignment algorithm for MRMC-WMN. This algorithm assignes the suitable channels to nodes, which provides better link capacity and reduces the co-channel interference. In the previous work performance of the proposed algorithm has been evaluated for a network of 30 nodes. The aim of this paper is to further evaluate the performance of proposed channel assignment algorithm for 40 and 50 nodes network. The results obtained from these networks show the consistent performance in terms of throughput, delay, packet loss and number of channels used per node as compared to LACA, FCPRA and IATC Channel Assignment algorithms
    • …
    corecore