8,842 research outputs found

    Non-Parametric Probabilistic Image Segmentation

    Get PDF
    We propose a simple probabilistic generative model for image segmentation. Like other probabilistic algorithms (such as EM on a Mixture of Gaussians) the proposed model is principled, provides both hard and probabilistic cluster assignments, as well as the ability to naturally incorporate prior knowledge. While previous probabilistic approaches are restricted to parametric models of clusters (e.g., Gaussians) we eliminate this limitation. The suggested approach does not make heavy assumptions on the shape of the clusters and can thus handle complex structures. Our experiments show that the suggested approach outperforms previous work on a variety of image segmentation tasks

    Generalized Video Deblurring for Dynamic Scenes

    Full text link
    Several state-of-the-art video deblurring methods are based on a strong assumption that the captured scenes are static. These methods fail to deblur blurry videos in dynamic scenes. We propose a video deblurring method to deal with general blurs inherent in dynamic scenes, contrary to other methods. To handle locally varying and general blurs caused by various sources, such as camera shake, moving objects, and depth variation in a scene, we approximate pixel-wise kernel with bidirectional optical flows. Therefore, we propose a single energy model that simultaneously estimates optical flows and latent frames to solve our deblurring problem. We also provide a framework and efficient solvers to optimize the energy model. By minimizing the proposed energy function, we achieve significant improvements in removing blurs and estimating accurate optical flows in blurry frames. Extensive experimental results demonstrate the superiority of the proposed method in real and challenging videos that state-of-the-art methods fail in either deblurring or optical flow estimation.Comment: CVPR 2015 ora
    • …
    corecore