7 research outputs found

    Discriminative models for multi-instance problems with tree-structure

    Full text link
    Modeling network traffic is gaining importance in order to counter modern threats of ever increasing sophistication. It is though surprisingly difficult and costly to construct reliable classifiers on top of telemetry data due to the variety and complexity of signals that no human can manage to interpret in full. Obtaining training data with sufficiently large and variable body of labels can thus be seen as prohibitive problem. The goal of this work is to detect infected computers by observing their HTTP(S) traffic collected from network sensors, which are typically proxy servers or network firewalls, while relying on only minimal human input in model training phase. We propose a discriminative model that makes decisions based on all computer's traffic observed during predefined time window (5 minutes in our case). The model is trained on collected traffic samples over equally sized time window per large number of computers, where the only labels needed are human verdicts about the computer as a whole (presumed infected vs. presumed clean). As part of training the model itself recognizes discriminative patterns in traffic targeted to individual servers and constructs the final high-level classifier on top of them. We show the classifier to perform with very high precision, while the learned traffic patterns can be interpreted as Indicators of Compromise. In the following we implement the discriminative model as a neural network with special structure reflecting two stacked multi-instance problems. The main advantages of the proposed configuration include not only improved accuracy and ability to learn from gross labels, but also automatic learning of server types (together with their detectors) which are typically visited by infected computers

    Challenges and Open Questions of Machine Learning in Computer Security

    Get PDF
    This habilitation thesis presents advancements in machine learning for computer security, arising from problems in network intrusion detection and steganography. The thesis put an emphasis on explanation of traits shared by steganalysis, network intrusion detection, and other security domains, which makes these domains different from computer vision, speech recognition, and other fields where machine learning is typically studied. Then, the thesis presents methods developed to at least partially solve the identified problems with an overall goal to make machine learning based intrusion detection system viable. Most of them are general in the sense that they can be used outside intrusion detection and steganalysis on problems with similar constraints. A common feature of all methods is that they are generally simple, yet surprisingly effective. According to large-scale experiments they almost always improve the prior art, which is likely caused by being tailored to security problems and designed for large volumes of data. Specifically, the thesis addresses following problems: anomaly detection with low computational and memory complexity such that efficient processing of large data is possible; multiple-instance anomaly detection improving signal-to-noise ration by classifying larger group of samples; supervised classification of tree-structured data simplifying their encoding in neural networks; clustering of structured data; supervised training with the emphasis on the precision in top p% of returned data; and finally explanation of anomalies to help humans understand the nature of anomaly and speed-up their decision. Many algorithms and method presented in this thesis are deployed in the real intrusion detection system protecting millions of computers around the globe
    corecore