18,917 research outputs found

    Learning to infer: RL-based search for DNN primitive selection on Heterogeneous Embedded Systems

    Full text link
    Deep Learning is increasingly being adopted by industry for computer vision applications running on embedded devices. While Convolutional Neural Networks' accuracy has achieved a mature and remarkable state, inference latency and throughput are a major concern especially when targeting low-cost and low-power embedded platforms. CNNs' inference latency may become a bottleneck for Deep Learning adoption by industry, as it is a crucial specification for many real-time processes. Furthermore, deployment of CNNs across heterogeneous platforms presents major compatibility issues due to vendor-specific technology and acceleration libraries. In this work, we present QS-DNN, a fully automatic search based on Reinforcement Learning which, combined with an inference engine optimizer, efficiently explores through the design space and empirically finds the optimal combinations of libraries and primitives to speed up the inference of CNNs on heterogeneous embedded devices. We show that, an optimized combination can achieve 45x speedup in inference latency on CPU compared to a dependency-free baseline and 2x on average on GPGPU compared to the best vendor library. Further, we demonstrate that, the quality of results and time "to-solution" is much better than with Random Search and achieves up to 15x better results for a short-time search

    Fast YOLO: A Fast You Only Look Once System for Real-time Embedded Object Detection in Video

    Get PDF
    Object detection is considered one of the most challenging problems in this field of computer vision, as it involves the combination of object classification and object localization within a scene. Recently, deep neural networks (DNNs) have been demonstrated to achieve superior object detection performance compared to other approaches, with YOLOv2 (an improved You Only Look Once model) being one of the state-of-the-art in DNN-based object detection methods in terms of both speed and accuracy. Although YOLOv2 can achieve real-time performance on a powerful GPU, it still remains very challenging for leveraging this approach for real-time object detection in video on embedded computing devices with limited computational power and limited memory. In this paper, we propose a new framework called Fast YOLO, a fast You Only Look Once framework which accelerates YOLOv2 to be able to perform object detection in video on embedded devices in a real-time manner. First, we leverage the evolutionary deep intelligence framework to evolve the YOLOv2 network architecture and produce an optimized architecture (referred to as O-YOLOv2 here) that has 2.8X fewer parameters with just a ~2% IOU drop. To further reduce power consumption on embedded devices while maintaining performance, a motion-adaptive inference method is introduced into the proposed Fast YOLO framework to reduce the frequency of deep inference with O-YOLOv2 based on temporal motion characteristics. Experimental results show that the proposed Fast YOLO framework can reduce the number of deep inferences by an average of 38.13%, and an average speedup of ~3.3X for objection detection in video compared to the original YOLOv2, leading Fast YOLO to run an average of ~18FPS on a Nvidia Jetson TX1 embedded system

    On the Compression of Recurrent Neural Networks with an Application to LVCSR acoustic modeling for Embedded Speech Recognition

    Full text link
    We study the problem of compressing recurrent neural networks (RNNs). In particular, we focus on the compression of RNN acoustic models, which are motivated by the goal of building compact and accurate speech recognition systems which can be run efficiently on mobile devices. In this work, we present a technique for general recurrent model compression that jointly compresses both recurrent and non-recurrent inter-layer weight matrices. We find that the proposed technique allows us to reduce the size of our Long Short-Term Memory (LSTM) acoustic model to a third of its original size with negligible loss in accuracy.Comment: Accepted in ICASSP 201
    • …
    corecore