4,526 research outputs found

    On the approach to equilibrium for a polymer with adsorption and repulsion

    Full text link
    We consider paths of a one-dimensional simple random walk conditioned to come back to the origin after L steps (L an even integer). In the 'pinning model' each path \eta has a weight \lambda^{N(\eta)}, where \lambda>0 and N(\eta) is the number of zeros in \eta. When the paths are constrained to be non-negative, the polymer is said to satisfy a hard-wall constraint. Such models are well known to undergo a localization/delocalization transition as the pinning strength \lambda is varied. In this paper we study a natural 'spin flip' dynamics for these models and derive several estimates on its spectral gap and mixing time. In particular, for the system with the wall we prove that relaxation to equilibrium is always at least as fast as in the free case (\lambda=1, no wall), where the gap and the mixing time are known to scale as L^{-2} and L^2\log L, respectively. This improves considerably over previously known results. For the system without the wall we show that the equilibrium phase transition has a clear dynamical manifestation: for \lambda \geq 1 the relaxation is again at least as fast as the diffusive free case, but in the strictly delocalized phase (\lambda < 1) the gap is shown to be O(L^{-5/2}), up to logarithmic corrections. As an application of our bounds, we prove stretched exponential relaxation of local functions in the localized regime.Comment: 43 pages, 5 figures; v2: corrected typos, added Table

    A one-dimensional coagulation-fragmentation process with a dynamical phase transition

    Get PDF
    We introduce a reversible Markovian coagulation-fragmentation process on the set of partitions of {1,…,L}\{1,\ldots,L\} into disjoint intervals. Each interval can either split or merge with one of its two neighbors. The invariant measure can be seen as the Gibbs measure for a homogeneous pinning model \cite{cf:GBbook}. Depending on a parameter λ\lambda, the typical configuration can be either dominated by a single big interval (delocalized phase), or be composed of many intervals of order 11 (localized phase), or the interval length can have a power law distribution (critical regime). In the three cases, the time required to approach equilibrium (in total variation) scales very differently with LL. In the localized phase, when the initial condition is a single interval of size LL, the equilibration mechanism is due to the propagation of two "fragmentation fronts" which start from the two boundaries and proceed by power-law jumps

    High-order conservative finite difference GLM-MHD schemes for cell-centered MHD

    Get PDF
    We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. (J. Comput. Phys. 175 (2002) 645-673). The resulting family of schemes is robust, cost-effective and straightforward to implement. Compared to previous existing approaches, it completely avoids the CPU intensive workload associated with an elliptic divergence cleaning step and the additional complexities required by staggered mesh algorithms. Extensive numerical testing demonstrate the robustness and reliability of the proposed framework for computations involving both smooth and discontinuous features.Comment: 32 pages, 14 figure, submitted to Journal of Computational Physics (Aug 7 2009

    From Competition to Complementarity: Comparative Influence Diffusion and Maximization

    Full text link
    Influence maximization is a well-studied problem that asks for a small set of influential users from a social network, such that by targeting them as early adopters, the expected total adoption through influence cascades over the network is maximized. However, almost all prior work focuses on cascades of a single propagating entity or purely-competitive entities. In this work, we propose the Comparative Independent Cascade (Com-IC) model that covers the full spectrum of entity interactions from competition to complementarity. In Com-IC, users' adoption decisions depend not only on edge-level information propagation, but also on a node-level automaton whose behavior is governed by a set of model parameters, enabling our model to capture not only competition, but also complementarity, to any possible degree. We study two natural optimization problems, Self Influence Maximization and Complementary Influence Maximization, in a novel setting with complementary entities. Both problems are NP-hard, and we devise efficient and effective approximation algorithms via non-trivial techniques based on reverse-reachable sets and a novel "sandwich approximation". The applicability of both techniques extends beyond our model and problems. Our experiments show that the proposed algorithms consistently outperform intuitive baselines in four real-world social networks, often by a significant margin. In addition, we learn model parameters from real user action logs.Comment: An abridged of this work is to appear in the Proceedings of VLDB Endowment (PVDLB), Vol 9, No 2. Also, the paper will be presented in the VLDB 2016 conference in New Delhi, India. This update contains new theoretical and experimental results, and the paper is now in single-column format (44 pages

    Glauber dynamics for the quantum Ising model in a transverse field on a regular tree

    Full text link
    Motivated by a recent use of Glauber dynamics for Monte-Carlo simulations of path integral representation of quantum spin models [Krzakala, Rosso, Semerjian, and Zamponi, Phys. Rev. B (2008)], we analyse a natural Glauber dynamics for the quantum Ising model with a transverse field on a finite graph GG. We establish strict monotonicity properties of the equilibrium distribution and we extend (and improve) the censoring inequality of Peres and Winkler to the quantum setting. Then we consider the case when GG is a regular bb-ary tree and prove the same fast mixing results established in [Martinelli, Sinclair, and Weitz, Comm. Math. Phys. (2004)] for the classical Ising model. Our main tool is an inductive relation between conditional marginals (known as the "cavity equation") together with sharp bounds on the operator norm of the derivative at the stable fixed point. It is here that the main difference between the quantum and the classical case appear, as the cavity equation is formulated here in an infinite dimensional vector space, whereas in the classical case marginals belong to a one-dimensional space

    The random geometry of equilibrium phases

    Full text link
    This is a (long) survey about applications of percolation theory in equilibrium statistical mechanics. The chapters are as follows: 1. Introduction 2. Equilibrium phases 3. Some models 4. Coupling and stochastic domination 5. Percolation 6. Random-cluster representations 7. Uniqueness and exponential mixing from non-percolation 8. Phase transition and percolation 9. Random interactions 10. Continuum modelsComment: 118 pages. Addresses: [email protected] http://www.mathematik.uni-muenchen.de/~georgii.html [email protected] http://www.math.chalmers.se/~olleh [email protected]
    • …
    corecore