66,331 research outputs found

    A Simple and Scalable Static Analysis for Bound Analysis and Amortized Complexity Analysis

    Full text link
    We present the first scalable bound analysis that achieves amortized complexity analysis. In contrast to earlier work, our bound analysis is not based on general purpose reasoners such as abstract interpreters, software model checkers or computer algebra tools. Rather, we derive bounds directly from abstract program models, which we obtain from programs by comparatively simple invariant generation and symbolic execution techniques. As a result, we obtain an analysis that is more predictable and more scalable than earlier approaches. Our experiments demonstrate that our analysis is fast and at the same time able to compute bounds for challenging loops in a large real-world benchmark. Technically, our approach is based on lossy vector addition systems (VASS). Our bound analysis first computes a lexicographic ranking function that proves the termination of a VASS, and then derives a bound from this ranking function. Our methodology achieves amortized analysis based on a new insight how lexicographic ranking functions can be used for bound analysis

    Combining k-Induction with Continuously-Refined Invariants

    Full text link
    Bounded model checking (BMC) is a well-known and successful technique for finding bugs in software. k-induction is an approach to extend BMC-based approaches from falsification to verification. Automatically generated auxiliary invariants can be used to strengthen the induction hypothesis. We improve this approach and further increase effectiveness and efficiency in the following way: we start with light-weight invariants and refine these invariants continuously during the analysis. We present and evaluate an implementation of our approach in the open-source verification-framework CPAchecker. Our experiments show that combining k-induction with continuously-refined invariants significantly increases effectiveness and efficiency, and outperforms all existing implementations of k-induction-based software verification in terms of successful verification results.Comment: 12 pages, 5 figures, 2 tables, 2 algorithm

    Lepton Flavour Violating top decays at the LHC

    Get PDF
    We consider lepton flavour violating decays of the top quark, mediated by four-fermion operators. We compile constraints on a complete set of SU(3)*U(1)-invariant operators, arising from their loop contributions to rare decays and from HERA's single top search. The bounds on e-mu flavour change are more restrictive than l-tau; nonetheless the top could decay to a jet +eμˉ+ e \bar{\mu} with a branching ratio of order 10−310^{-3}. We estimate that the currently available LHC data (20 inverse-fb at 8 TeV) could be sensitive to BR(t→eμˉBR(t \to e \bar{\mu}+ jet) ∼6×10−5 \sim 6\times 10^{-5}, and extrapolate that 100 inverse-fb at 13 TeV could reach a sensitivity of ∼1×10−5 \sim 1 \times 10^{-5}.Comment: 10 pages + Appendice

    Invariant Generation for Multi-Path Loops with Polynomial Assignments

    Full text link
    Program analysis requires the generation of program properties expressing conditions to hold at intermediate program locations. When it comes to programs with loops, these properties are typically expressed as loop invariants. In this paper we study a class of multi-path program loops with numeric variables, in particular nested loops with conditionals, where assignments to program variables are polynomial expressions over program variables. We call this class of loops extended P-solvable and introduce an algorithm for generating all polynomial invariants of such loops. By an iterative procedure employing Gr\"obner basis computation, our approach computes the polynomial ideal of the polynomial invariants of each program path and combines these ideals sequentially until a fixed point is reached. This fixed point represents the polynomial ideal of all polynomial invariants of the given extended P-solvable loop. We prove termination of our method and show that the maximal number of iterations for reaching the fixed point depends linearly on the number of program variables and the number of inner loops. In particular, for a loop with m program variables and r conditional branches we prove an upper bound of m*r iterations. We implemented our approach in the Aligator software package. Furthermore, we evaluated it on 18 programs with polynomial arithmetic and compared it to existing methods in invariant generation. The results show the efficiency of our approach

    Succinct Representations for Abstract Interpretation

    Full text link
    Abstract interpretation techniques can be made more precise by distinguishing paths inside loops, at the expense of possibly exponential complexity. SMT-solving techniques and sparse representations of paths and sets of paths avoid this pitfall. We improve previously proposed techniques for guided static analysis and the generation of disjunctive invariants by combining them with techniques for succinct representations of paths and symbolic representations for transitions based on static single assignment. Because of the non-monotonicity of the results of abstract interpretation with widening operators, it is difficult to conclude that some abstraction is more precise than another based on theoretical local precision results. We thus conducted extensive comparisons between our new techniques and previous ones, on a variety of open-source packages.Comment: Static analysis symposium (SAS), Deauville : France (2012
    • …
    corecore