1,244 research outputs found

    Studies on image compression and image reconstruction

    Get PDF
    During this six month period our works concentrated on three, somewhat different areas. We looked at and developed a number of error concealment schemes for use in a variety of video coding environments. This work is described in an accompanying (draft) Masters thesis. In the thesis we describe application of this techniques to the MPEG video coding scheme. We felt that the unique frame ordering approach used in the MPEG scheme would be a challenge to any error concealment/error recovery technique. We continued with our work in the vector quantization area. We have also developed a new type of vector quantizer, which we call a scan predictive vector quantization. The scan predictive VQ was tested on data processed at Goddard to approximate Landsat 7 HRMSI resolution and compared favorably with existing VQ techniques. A paper describing this work is included. The third area is concerned more with reconstruction than compression. While there is a variety of efficient lossless image compression schemes, they all have a common property that they use past data to encode future data. This is done either via taking differences, context modeling, or by building dictionaries. When encoding large images, this common property becomes a common flaw. When the user wishes to decode just a portion of the image, the requirement that the past history be available forces the decoding of a significantly larger portion of the image than desired by the user. Even with intelligent partitioning of the image dataset, the number of pixels decoded may be four times the number of pixels requested. We have developed an adaptive scanning strategy which can be used with any lossless compression scheme and which lowers the additional number of pixels to be decoded to about 7 percent of the number of pixels requested! A paper describing these results is included

    High-dimensional indexing methods utilizing clustering and dimensionality reduction

    Get PDF
    The emergence of novel database applications has resulted in the prevalence of a new paradigm for similarity search. These applications include multimedia databases, medical imaging databases, time series databases, DNA and protein sequence databases, and many others. Features of data objects are extracted and transformed into high-dimensional data points. Searching for objects becomes a search on points in the high-dimensional feature space. The dissimilarity between two objects is determined by the distance between two feature vectors. Similarity search is usually implemented as nearest neighbor search in feature vector spaces. The cost of processing k-nearest neighbor (k-NN) queries via a sequential scan increases as the number of objects and the number of features increase. A variety of multi-dimensional index structures have been proposed to improve the efficiency of k-NN query processing, which work well in low-dimensional space but lose their efficiency in high-dimensional space due to the curse of dimensionality. This inefficiency is dealt in this study by Clustering and Singular Value Decomposition - CSVD with indexing, Persistent Main Memory - PMM index, and Stepwise Dimensionality Increasing - SDI-tree index. CSVD is an approximate nearest neighbor search method. The performance of CSVD with indexing is studied and the approximation to the distance in original space is investigated. For a given Normalized Mean Square Error - NMSE, the higher the degree of clustering, the higher the recall. However, more clusters require more disk page accesses. Certain number of clusters can be obtained to achieve a higher recall while maintaining a relatively lower query processing cost. Clustering and Indexing using Persistent Main Memory - CIPMM framework is motivated by the following consideration: (a) a significant fraction of index pages are accessed randomly, incurring a high positioning time for each access; (b) disk transfer rate is improving 40% annually, while the improvement in positioning time is only 8%; (c) query processing incurs less CPU time for main memory resident than disk resident indices. CIPMM aims at reducing the elapsed time for query processing by utilizing sequential, rather than random disk accesses. A specific instance of the CIPMM framework CIPOP, indexing using Persistent Ordered Partition - OP-tree, is elaborated and compared with clustering and indexing using the SR-tree, CISR. The results show that CIPOP outperforms CISR, and the higher the dimensionality, the higher the performance gains. The SDI-tree index is motivated by fanouts decrease with dimensionality increasing and shorter vectors reduce cache misses. The index is built by using feature vectors transformed via principal component analysis, resulting in a structure with fewer dimensions at higher levels and increasing the number of dimensions from one level to the other. Dimensions are retained in nonincreasing order of their variance according to a parameter p, which specifies the incremental fraction of variance at each level of the index. Experiments on three datasets have shown that SDL-trees with carefully tuned parameters access fewer disk accesses than SR-trees and VAMSR-trees and incur less CPU time than VA-Files in addition

    Gate-error analysis in simulations of quantum computers with transmon qubits

    Get PDF
    In the model of gate-based quantum computation, the qubits are controlled by a sequence of quantum gates. In superconducting qubit systems, these gates can be implemented by voltage pulses. The success of implementing a particular gate can be expressed by various metrics such as the average gate fidelity, the diamond distance, and the unitarity. We analyze these metrics of gate pulses for a system of two superconducting transmon qubits coupled by a resonator, a system inspired by the architecture of the IBM Quantum Experience. The metrics are obtained by numerical solution of the time-dependent Schr\"odinger equation of the transmon system. We find that the metrics reflect systematic errors that are most pronounced for echoed cross-resonance gates, but that none of the studied metrics can reliably predict the performance of a gate when used repeatedly in a quantum algorithm

    Multi-View Face Recognition From Single RGBD Models of the Faces

    Get PDF
    This work takes important steps towards solving the following problem of current interest: Assuming that each individual in a population can be modeled by a single frontal RGBD face image, is it possible to carry out face recognition for such a population using multiple 2D images captured from arbitrary viewpoints? Although the general problem as stated above is extremely challenging, it encompasses subproblems that can be addressed today. The subproblems addressed in this work relate to: (1) Generating a large set of viewpoint dependent face images from a single RGBD frontal image for each individual; (2) using hierarchical approaches based on view-partitioned subspaces to represent the training data; and (3) based on these hierarchical approaches, using a weighted voting algorithm to integrate the evidence collected from multiple images of the same face as recorded from different viewpoints. We evaluate our methods on three datasets: a dataset of 10 people that we created and two publicly available datasets which include a total of 48 people. In addition to providing important insights into the nature of this problem, our results show that we are able to successfully recognize faces with accuracies of 95% or higher, outperforming existing state-of-the-art face recognition approaches based on deep convolutional neural networks
    • …
    corecore