19,268 research outputs found

    Higher derivative couplings and massive supergravity in three dimensions

    Full text link
    We develop geometric superspace settings to construct arbitrary higher derivative couplings (including R^n terms) in three-dimensional supergravity theories with N=1,2,3 by realising them as conformal supergravity coupled to certain compensators. For all known off-shell supergravity formulations, we construct supersymmetric invariants with up to and including four derivatives. As a warming-up exercise, we first give a new and completely geometric derivation of such invariants in N=1 supergravity. Upon reduction to components, they agree with those given in arXiv:0907.4658 and arXiv:1005.3952. We then carry out a similar construction in the case of N=2 supergravity for which there exist two minimal formulations that differ by the choice of compensating multiplet: (i) a chiral scalar multipet; (ii) a vector multiplet. For these formulations all four derivative invariants are constructed in completely general and gauge independent form. For a general supergravity model (in the N=1 and minimal N=2 cases) with curvature-squared and lower order terms, we derive the superfield equations of motion, linearise them about maximally supersymmetric backgrounds and obtain restrictions on the parameters that lead to models for massive supergravity. We use the non-minimal formulation for N = 2 supergravity (which corresponds to a complex linear compensator) to construct a novel consistent theory of massive supergravity. In the case of N = 3 supergravity, we employ the off-shell formulation with a vector multiplet as compensator to construct for the first time various higher derivative invariants. These invariants may be used to derive models for N = 3 massive supergravity. As a bi-product of our analysis, we also present superfield equations for massive higher spin multiplets in (1,0), (1,1) and (2,0) anti-de Sitter superspaces.Comment: 84 pages; V3: references added, minor modifications, published versio

    An Action for Extended String Newton-Cartan Gravity

    Get PDF
    We construct an action for four-dimensional extended string Newton-Cartan gravity which is an extension of the string Newton-Cartan gravity that underlies nonrelativistic string theory. The action can be obtained as a nonrelativistic limit of the Einstein-Hilbert action in General Relativity augmented with a term that contains an auxiliary two-form and one-form gauge field that both have zero flux on-shell. The four-dimensional extended string Newton-Cartan gravity is based on a central extension of the algebra that underlies string Newton-Cartan gravity. The construction is similar to the earlier construction of a three-dimensional Chern-Simons action for extended Newton-Cartan gravity, which is based on a central extension of the algebra that underlies Newton-Cartan gravity. We show that this three-dimensional action is naturally obtained from the four-dimensional action by a reduction over the spatial isometry direction longitudinal to the string followed by a truncation of the extended string Newton-Cartan gravity fields. Our construction can be seen as a special case of the construction of an action for extended p-brane Newton-Cartan gravity in p+3 dimensions.Comment: 16 pages; v2: references added; v3: 18 pages, published versio
    • …
    corecore