5 research outputs found

    A variable-fractional order admittance controller for pHRI

    Get PDF
    In today’s automation driven manufacturing environments, emerging technologies like cobots (collaborative robots) and augmented reality interfaces can help integrating humans into the production workflow to benefit from their adaptability and cognitive skills. In such settings, humans are expected to work with robots side by side and physically interact with them. However, the trade-off between stability and transparency is a core challenge in the presence of physical human robot interaction (pHRI). While stability is of utmost importance for safety, transparency is required for fully exploiting the precision and ability of robots in handling labor intensive tasks. In this work, we propose a new variable admittance controller based on fractional order control to handle this trade-off more effectively. We compared the performance of fractional order variable admittance controller with a classical admittance controller with fixed parameters as a baseline and an integer order variable admittance controller during a realistic drilling task. Our comparisons indicate that the proposed controller led to a more transparent interaction compared to the other controllers without sacrificing the stability. We also demonstrate a use case for an augmented reality (AR) headset which can augment human sensory capabilities for reaching a certain drilling depth otherwise not possible without changing the role of the robot as the decision maker

    Passive Realizations of Series Elastic Actuation: Effects of Plant and Controller Dynamics on Haptic Rendering Performance

    Full text link
    We introduce minimal passive physical equivalents of series (damped) elastic actuation (S(D)EA) under closed-loop control to determine the effect of different plant parameters and controller gains on the closed-loop performance of the system and to help establish an intuitive understanding of the passivity bounds. Furthermore, we explicitly derive the feasibility conditions for these passive physical equivalents and compare them to the necessary and sufficient conditions for the passivity of S(D)EA under velocity sourced impedance control (VSIC) to establish their relationship. Through the passive physical equivalents, we rigorously compare the effect of different plant dynamics (e.g., SEA and SDEA) on the system performance. We demonstrate that passive physical equivalents make the effect of controller gains explicit and establish a natural means for effective impedance analysis. We also show that passive physical equivalents promote co-design thinking by enforcing simultaneous and unbiased consideration of (possibly negative) controller gains and plant parameters. We demonstrate the usefulness of negative controller gains when coupled to properly designed plant dynamics. Finally, we provide experimental validations of our theoretical results and characterizations of the haptic rendering performance of S(D)EA under VSIC

    Using fractional order elements for haptic rendering

    No full text

    Using fractional order elements for haptic rendering

    No full text
    Fractional order calculus—a generalization of the traditional calculus to arbitrary order differointegration—is an effective mathematical tool that broadens the modeling boundaries of the familiar integer order calculus. Fractional order models enable faithful representation of viscoelastic materials that exhibit frequency dependent stiffness and damping characteristics within a single mechanical element. We propose the use of fractional order models/controllers in haptic systems to significantly extend the type of impedances that can be rendered using the integer order models. We study the effect of fractional order elements on the coupled stability of the overall sampled-data system. We show that fractional calculus generalization provides an additional degree of freedom for adjusting the dissipation behavior of the closed-loop system and generalize the well-known passivity condition to include fractional order impedances. Our results demonstrate the effect of the order of differointegration on the passivity boundary. We also characterize the effective impedance of the fractional order elements as a function of frequency and differointegration order
    corecore