7,501 research outputs found

    Centralized and Cooperative Transmission of Secure Multiple Unicasts using Network Coding

    Full text link
    We introduce a method for securely delivering a set of messages to a group of clients over a broadcast erasure channel where each client is interested in a distinct message. Each client is able to obtain its own message but not the others'. In the proposed method the messages are combined together using a special variant of random linear network coding. Each client is provided with a private set of decoding coefficients to decode its own message. Our method provides security for the transmission sessions against computational brute-force attacks and also weakly security in information theoretic sense. As the broadcast channel is assumed to be erroneous, the missing coded packets should be recovered in some way. We consider two different scenarios. In the first scenario the missing packets are retransmitted by the base station (centralized). In the second scenario the clients cooperate with each other by exchanging packets (decentralized). In both scenarios, network coding techniques are exploited to increase the total throughput. For the case of centralized retransmissions we provide an analytical approximation for the throughput performance of instantly decodable network coded (IDNC) retransmissions as well as numerical experiments. For the decentralized scenario, we propose a new IDNC based retransmission method where its performance is evaluated via simulations and analytical approximation. Application of this method is not limited to our special problem and can be generalized to a new class of problems introduced in this paper as the cooperative index coding problem

    Increasing Physical Layer Security through Scrambled Codes and ARQ

    Full text link
    We develop the proposal of non-systematic channel codes on the AWGN wire-tap channel. Such coding technique, based on scrambling, achieves high transmission security with a small degradation of the eavesdropper's channel with respect to the legitimate receiver's channel. In this paper, we show that, by implementing scrambling and descrambling on blocks of concatenated frames, rather than on single frames, the channel degradation needed is further reduced. The usage of concatenated scrambling allows to achieve security also when both receivers experience the same channel quality. However, in this case, the introduction of an ARQ protocol with authentication is needed.Comment: 5 pages, 4 figures; Proc. IEEE ICC 2011, Kyoto, Japan, 5-9 June 201

    Security in Locally Repairable Storage

    Full text link
    In this paper we extend the notion of {\em locally repairable} codes to {\em secret sharing} schemes. The main problem that we consider is to find optimal ways to distribute shares of a secret among a set of storage-nodes (participants) such that the content of each node (share) can be recovered by using contents of only few other nodes, and at the same time the secret can be reconstructed by only some allowable subsets of nodes. As a special case, an eavesdropper observing some set of specific nodes (such as less than certain number of nodes) does not get any information. In other words, we propose to study a locally repairable distributed storage system that is secure against a {\em passive eavesdropper} that can observe some subsets of nodes. We provide a number of results related to such systems including upper-bounds and achievability results on the number of bits that can be securely stored with these constraints.Comment: This paper has been accepted for publication in IEEE Transactions of Information Theor
    corecore